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Electrodynamics methods have been proved to be
useful and powerful tools to theoretically study
localized and delocalized surface plasmons [1]. The
recent progress achieved in fabrication techniques
to control subnanometer structures and features
has lead to search for more rigorous approaches
able to theoretically describe nonlocality or the
spill-out of conduction electrons, effects well visible
in very narrow junctions or subnanometers gaps
[2].

Standard atomistic ab-initio Time-Dependent
Density Functional Theory (TD-DFT) is the most
suitable approach for a complete quantum
mechanical treatment of plasmons [3] but it
becomes computationally unaffordable for particle
sizes of several hundreds of atoms.

Here we alternatively propose a Time-Dependent
Density Functional Tight-Binding Method (TD-DFTB)
study [4] on silver dimers done using an optimized
Slater-Koster parametrization. More in detail, we
study the plasmonic response of dimers of closed-
shell Agn (n=10, 20, 35, 56, 84 and 120) tetrahedral
clusters (tip-to-tip configuration) as well as Agiie
cuboctahedral clusters (face to face configuration)
as a function of the nanogap size (from 2 A to 20 A).
Atom positions are fixed to the ones obtained by
relaxing the isolated clusters within standard DFT
(TURBOMOLE code) and geometries are re-
optimized only for the smallest gaps (2 A and 4 A).

A red-shift in the plasmonic peak can be clearly
seen in Fig. 1 by reducing the interparticle distance
until 6 A, this being due to the clusters mutual
depolarization. For smaller distances, a blue-shift
effect appears for both the structures, this proving
the onset of a quantum mechanical effect already
evidenced in literature within other approaches [5].
Moreover, it should be noted as the coupling
effects, both in the near-field and in the near-
touching regimes, become stronger as the number
of interacting atoms becomes larger (Fig. 1b). With
a computational cost much smaller with respect to
standard TD-DFT one, TD-DFTB seems thus to be a
useful method to overcome the limits of classical

TNT2017 dresden (germany)

description and thus to favor the spread of
computational quantum plasmonics.
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Figure 1. TD-DFTB efficiency calculated for dimers of tip-
to-tip closed-shell Ag120 tetrahedrons (a) and face-to-
face Agll6 cuboctahedrons (b). Separation gaps from 2
A to 20 A are analyzed with the spectra reported from
the bottom to top side of the panels, respectively.
Geometries are sketched in the insets.
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