Graphene/Bismuth Selenide Heterostructures for Thermoelectric Applications

Margarita Baitimirova¹ Jana Andzane¹ Raimonds Poplausks¹ Marina Romanova¹ Donats Erts¹

¹Institute of Chemical Physics, University of Latvia, Raina boulevard 19, Riga, Latvia

margarita.baitimirova@lu.lv

Graphene is modern 2D-material with unique physical properties - optical transparency, high electric and thermal conductivity, mechanical strength and flexibility. Due to these properties graphene is a perspective material for the use as electrode in opto- and thermoelectric devices instead of, for example, widely used indium tin oxide. Hexagonal crystal lattice of graphene is very similar to it of some best thermoelectric materials such as bismuth selenide (Bi₂Se₃). This similarity allows heteroepitaxial growth of Bi₂Se₃ nanoplates on the graphene surface, resulting in formation of graphene/Bi₂Se₃ heterostructures. Previously it was reported that crystallographic growth direction and crystallite size of pure Bi₂Se₃ nanostructures play improvement significant role in of its thermoelectric performance [1]. Likewise, the growth orientation change of of Bi₂Se₃ nanostructures from planar (or epitaxial) to nonplanar relative to the substrate surface may enhance thermoelectrical performance of graphene/Bi₂Se₃ heterostructures.

This work is focused on application of vapour-solid deposition method [2] for fabrication of different in terms of continuity and growth orientation types of nanostructured Bi₂Se₃ layers on the surface of monolayer CVD graphene. During Bi₂Se₃ synthesis process short-term inert gas flow was used to change growth orientation of Bi₂Se₃ nanostructures [3]. The relation between synthesis parameters and quality of obtained on graphene surface Bi₂Se₃ nanostructured layers (chemical composition, crystal structure and coverage of graphene area) is discussed. Thermoelectric voltage, generated by obtained graphene/Bi₂Se₃ heterostructures in response to temperature gradient of 16 °C applied to it, is compared. The graphene/Bi₂Se₃ heterostructures, where Bi₂Se₃ layer consisted from both planar and non-planar nanoplates are found to be twice more effective than heterostructures with Bi₂Se₃ layer consisted only from planar

nanoplates (Figure 1). Thus, graphene/ Bi_2Se_3 heterostructures, where Bi_2Se_3 layer consists of mix of planar and non-planar nanoplates, is perspective material for application in thermoelectric devices. The work is supported by the ERAF project No 1.1.1./16/A/257.

References

- [1] Sun Z., Liufu S., Chen X., Chen L. CrystEngComm 12 (2010) 2672–2674
- [2] Andzane J., Kunakova G., Charpentier S., Hrkac V., Kienle L., Baitimirova M., Bauch T., Lombardi F., Erts D. Nanoscale 7 (2015) 15935-15944
- [3] Baitimirova M., Andzane J., Petersons G., Meija R., Poplausks R., Romanova M., Erts D. J Mater Sci 51 (2016) 8224-8232

Figures

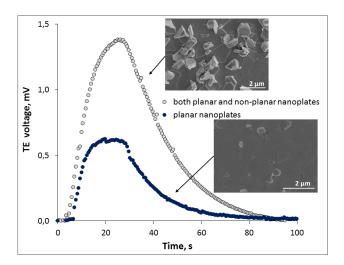


Figure 1. V-t curves illustrating thermoelectric response of the device based on graphene/ Bi_2Se_3 heterostructures to the applied temperature gradient of 16 °C for 30 s.