Development of large-area topological insulators on Silicon for spintronics

R. Mantovan^a
E. Longo^a, L. Locatelli^a, M. Belli^a, M. Alia^a, M. Longo^b, Fanciulli^c, C. Wiemer^a
^a CNR-IMM, Unit of Agrate Brianza, 20864 Agrate Brianza (MB), Italy.
^b CNR-IMM, 00133 Rome, Italy
^c Department of Material Science, University of Milano Bicocca, 20125, Milan, Italy.
roberto.mantovan@mdm.imm.cnr.it

Topological insulators (TIs) are gaining a huge attention from a technological point of view due to highly efficient spin-charge interconversion phenomena occurring at their interface with magnetic materials, which is of interest for spin-orbit torque MRAM [1] and novel processing-in-memory devices such as the MESO proposed by Intel [2]. We developed Metal Organic Chemical Vapour Deposition (MOCVD) processes to grow epitaxial-quality Sb2Te3 and Bi2Te3 3D-TIs on 4" Si(111) substrates [3-5], see Figure. 1. First, their topological character has been demonstrated by combining magnetotransport and angular photoemission spectroscopy studies [6]. Then, we built simple spin-charge converters by interfacing the TIs with ferromagnetic layers (FM=Fe,Co). Within this talk, we report a large spin-charge conversion efficiency in the FM/Sb₂Te₃-based systems, as expressed in terms of the generated inverse Edelstein Effect (λ_{EE}) extracted from spin pumping ferromagnetic resonance (SP-FMR) [7,8]. Values of λ_{LEE} up to 0.61 nm were measured [8], indicating quite a large conversion efficieny within the class of second generation 3D chalcogenide-based Tis (Figure 2). Our results open interesting routes toward the use of chemical methods to produce TIs over large area Si substrates and characterized by highly performing spin-to-charge conversion, thus marking a milestone toward future technology-transfer.

References

- [1] H. Wu et al., Nat. Comm 12, 6251 (2021)
- [2] S. Manipatruni et al., Nature 565, 35 (2019)
- [3] M. Rimoldi et al., RCS Advances 10, 19936 (2020)
- [4] M. Rimoldi et al., Cryst. Growth Des. 21, 5135 (2021)
- [5] A Kumar et al., Cryst. Growth Des. 21, 4023 (2021)
- [6] L. Locatelli et al., Scientific Reports 12, 3891 (2022)
- [7] E. Longo et al., Adv. Mater. Interfaces 8, 2101244 (2021)
- [8] E. Longo et al., Adv. Funct. Mater. 32, 2109361 (2021)

Figures

Figure 1: Transmission electron microscopy images of MOCVD-grown TIs on 4'' Si(111).

Figure 2: SP-FMR (a) sample's configuration and (b) results obtained in Au/Co/Au/Sb₂Te₃/Si(111) spincharge converter.