Terahertz magneto-photocurrents in the topological insulator Bi₂Se₃

Chihun In^{1,2}

Genaro Bierhance^{1,2}, Tom Seifert^{1,2}, Deepti Jain³, Seongshik Oh³, and Tobias Kampfrath^{1,2}

¹Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany

²Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany

³Department of Physics & Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

tobias.kampfrath@fu-berlin.de

Femtosecond laser excitation can drive ultrafast photocurrents in topological insulators (TIs) such as Bi₂Se₃ (Fig. 1a). The photocurrent can be monitored by detection the terahertz (THz) radiation it emits [1], thereby providing insights into the current generation and relaxation [1]. Application of a static magnetic field **B** was reported to modify the photocurrent response on nanosecond time scales [2].

Here, we report THz emission from 30-quintuple-layers (QL) of Bi₂Se₃ thin films by applying a field of $|\mathbf{B}| = 0.3$ T parallel to the film plane (Fig. 1a). Figure 2b shows that the **B**-induced THz photocurrent signal ΔS_B and the residual THz signal S(0) for $\mathbf{B} = 0$ T exhibit different THz waveforms. In addition, we observe a strong reduction of the ΔS_B amplitude as an increasing fraction x of bismuth is substituted by indium (Fig. 1c). According to ref. [3-5], an increase of x reduces the spin-orbit coupling strength of $(Bi_{1-x}In_x)_2Se_3$ and eventually removes the Dirac surface state at a critical concentration of x ≈ 0.07 . Therefore, the suppressed ΔS_B signal of $(Bi_{1-x}In_x)_2Se_3$ for x > 0.07 (Fig. 1c) suggests that the Dirac surface state and the spin-momentum locking are critical to the emergence of the observed THz magneto-photocurrent. The time-dependence of the photocurrent will be extracted, and possible interpretations discussed.

References

- [1] L. Braun et al., Nature Communications 7, 1 (2016) 13259
- [2] N. Ogawa et al., Physical Review B 88, 3 (2013) 035130
- [3] C. Heide et al., Nature Photonics 16, 9 (2022), 620-624
- [4] M. Salehi et al., Nano Letters 16, 9 (2016) 5528-5532
- [5] M. Brahlek et al., Physical Review Letters 109, 18 (2012) 186403

Figures

Figure 1: (a) THz emission spectroscopy of Bi₂Se₃ thin films with thickness *d*. The static magnetic field **B** is applied parallel to the film plane. A femtosecond (fs) pump pulse is incident from the Al₂O₃ substrate and triggers a photocurrent that gives rise to the emission of a THz electromagnetic pulse. (b) Waveforms of the **B**-induced THz signal ΔS_B and the residual THz signal S(0), normalized to their maxima. (c) Peak values of ΔS_B of (Bi_{1-x}ln_x)₂Se₃ as a function of the indium concentration x.