Record high $T_c \sim 570$ K and saturation magnetization enhancement in 2D Fe₅₋₆GeTe₂ /Bi₂Te₃ heterostructures grown by MBE

E. Georgopoulou-Kotsaki^{a,b}

P. Pappas^a, A. Lintzeris^{a,c}, P. Tsipas^a, S. Fragkos^{a,d}, A. Markou^e, C. Felser^e, E. Longo^f, M. Fanciulli^g, R. Mantovan^f, F. Mahfouzi^h, N. Kioussis^h, A. Dimoulas^a

aNCSR Demokritos, 15341, Athens, Greece.

Department of Physics, National and Kapodistrian University of Athens, 15784, Athens, Greece.
Cepartment of Physics, National Technical University of Athens, 15780, Athens, Greece.
Department of Mechanical Engineering, University of West Attica, 12241, Athens, Greece.
Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.
CNR-IMM, 20864 Agrate Brianza, Italy.
Department of Material Science, University of Milano Bicocca, 20125, Milan, Italy.

^aDepartment of Material Science, University of Milano Bicocca, 20125, Milan, Italy. ^bDepartment of Physics and Astronomy, California State University, CA 91330-8268 Northridge, USA. e.georgopoulou@inn.demokritos.gr

Two-dimensional (2D) van der Waals (vdW) metallic ferromagnets Fe_xGeTe_2 (x = 3 – 5) are promising candidates for spintronics [1], [2] as well as for fundamental physics studies since they are found to possess skyrmions and topological nodal lines with high anomalous Hall current [3]. Thin films of Fe₅GeTe₂ have been grown by Molecular Beam Epitaxy (MBE) with a T_c close to room temperature (RT) [4]. In the present work [5], ferromagnetic $Fe_{5.6}GeTe_2/Bi_2Te_3$ topological insulator (TI) heterostructures were grown by MBE on insulating substrates and they have been compared to bare Fe₅₋₆GeTe₂ films. In situ RHEED and ex-situ XRD confirm the $x = 5-\delta$ phase indicating good epitaxial quality of the films. The magnetic properties were investigated using Magneto-optical Kerr (MOKE) microscopy/magnetometry and SQUID magnetometry. The main result is that the growth of Bi₂Te₃ TI on Fe₅₋₆GeTe₂ films significantly enhances both, the in-plane saturation magnetization and the T_c well above room temperature reaching a record value of 570 K. First principles calculations, indicate that the proximity of Bi2Te3 to Fe5-6GeTe2 increases the density of states at the Fermi level and/or induces tensile strain which stabilizes a high magnetic moment phase which could explain the observed enhancement of ferromagnetism. In ferromagnetic resonance measurements, a large spin mixing conductance is observed in $Fe_{5,6}GeTe_2/Bi_2Te_3$ system, suggesting that this heterostructure could be suitable to exploit spin to charge conversion in spintronic devices at room temperature.

We acknowledge EU funding from project H2020 FET PROAC SKYTOP-824123. References

- [1] Y. Deng et al., Nature, 563 (2018) 94-99
- [2] J. Seo et al., Sc. Adv., 6 (2020) eaay8912
- [3] K. Kim et al., Nat. Mater, 17 (2018) 794-799
- [4] M. Ribeiro et al., npj 2D Mater Appl, 6 (2022) 10
- [5] E. Georgopoulou-Kotsaki et al., Nanoscale (2023), DOI: 10.1039/D2NR04820E

