Xiao-Mei Zhang*,1, 2
Sian-Hong Tseng3 and Ming-Yen Lu3
1 Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 1528550, Japan
2 Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 1528550, Japan
3 Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

*X. M. Zhang, E-mail zhang.x.as@m.titech.ac.jp

p-Type Multilayer MoS2 Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS2, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure [1]. MoS2 is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (E3 = 1–2 eV) [2]. For low-power, high-performance complementary logic applications, both p- and n-type MoS2 FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS2. However, the fabrication of MoS2 FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel [3]. Plasma treatments with different species (including CF4, SF6, O2, and CHF3) have also been found to achieve the desired property modifications of MoS2 [4-5].

In this work, we demonstrated a p-type multilayer MoS2 enabled by selective-area doping using CHF3 plasma treatment. Compared with single layer MoS2, multilayer MoS2 can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS2 films on 300 nm thick SiO2/Si substrate are carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH4)2MoS4, in a tube furnace. a two-step annealing process is conducted to synthesize MoS2 films. For the first step, the temperature is set to 280 °C for 30 min in an N2 rich environment at 1.8 Torr. This is done to transform (NH4)2MoS4 into MoS2. To further reduce MoS2 into MoS2, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H2 at 1.8 Torr. The grown MoS2 films are subjected to out-of-plane doping by CHF3 plasma treatment using a Dry-etching system (ULVAC original NLD-570) as shown in Fig.1a. The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Fig. 1b shows the optical micrograph (OM) image of the selective-area MoS2 films with and without CHF3 plasma treatment.

Back-gated MoS2 PFETs were presented with an on/off current ratio in the order of 103 and a field-effect mobility of 65.2 cm2V-1s-1. The MoS2 PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS2 in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

References

Figures

Figure 1: (a) Schematic diagram of out-of-plane doping by CHF$_3$ plasma treatment. (b) OM image of the selective-area MoS$_2$ films with and without CHF$_3$ plasma treatment.