Xiao-Mei Zhang^{*,1, 2}

Sian-Hong Tseng³ and Ming-Yen Lu³

¹ Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 1528550, Japan

² Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 1528550, Japan

³ Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

*X. M. Zhang, E-mail zhang.x.as@m.titech.ac.jp

p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure ^[1]. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (E_g = 1–2 eV) ^[2]. For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel ^[3]. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂ ^[4-5].

In this work, we demonstrated a p-type multilayer MoS_2 enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS_2 , multilayer MoS_2 can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS_2 films on 300 nm thick SiO_2/Si substrate are carried out by thermal decomposition of ammonium tetrathiomolybdate, $(NH_4)_2MoS_4$, in a tube furnace. a two-step annealing process is conducted to synthesize MoS_2 films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform $(NH_4)_2MoS_4$ into MoS_3 . To further reduce MoS_3 into MoS_2 , the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS_2 films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570) as shown in Fig.1a. The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Fig. 1b shows the optical micrograph (OM) image of the selective-area MoS_2 films with and without CHF₃ plasma treatment.

Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10^3 and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

References

- [1] Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS₂: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105, 136805.
- [2] Jeong, S.H.; Liu, N.; Park, H.; Hong, Y.K.; Kim, S. Temperature-dependent electrical properties of Al₂O₃passivated multilayer MoS₂ thin-film transistors. Appl. Sci. 2018, 8(3), 424.

- [3] Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS₂ phototransistors. ACS Nano, 2012, 6 (1), 74.
- [4] Xue, F.; Chen, L.; Chen, J.; Liu, J.; Wang, L.; Chen, M.; Pang, Y.; Yang, X.; Gao, G.; Zhai, J.; Wang, Z.L. p-type MoS₂ and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv Mater., 2016, 28 (17), 3391.
- [5] Wi, S.; Kim, H.; Chen, M.; Nam, H.; Guo, L.J.; Meyhofer, E.; Liang, X. Enhancement of photovoltaic response in multilayer MoS₂ induced by plasma doping. ACS NANO, 2014, 8 (5), 5270.

Figures

Figure 1: (a) Schematic diagram of out-of-plane doping by CHF_3 plasma treatment. (b) OM image of the selective-area MoS_2 films with and without CHF_3 plasma treatment.