It can be concluded that SnS thin films exhibit strong layer-number dependence in the phonon vibration modes near the region of 200 cm$^{-1}$. This finding suggests that these materials could be useful in future thermoelectric and solar power generation applications.
Figures

(a) Bulk crystal structure of SnS. It has a structure in which S and Sn are alternately bonded. (b) The corresponding first Brillouin zone.

Figure 1: (a) Bulk crystal structure of SnS. It has a structure in which S and Sn are alternately bonded. (b) The corresponding first Brillouin zone.

Figure 2: Raman active vibration modes at 150 to 250 cm⁻¹. The appearance of changes in the Raman active vibration modes corresponds to the number of layers. A_1, etc. in the figure show irreducible representations of the vibration mode.