Hiroki Waizumi¹

Tsuyoshi Takaoka², Alam Md Iftekharul¹, Muhammad Shamim Al Mamun¹, Yudai Tanaka¹, Tadahiro Komeda²

¹Department of Chemistry, Graduate School of Science, Tohoku University, 980-8578, Sendai, Japan. ²Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577, Sendai, Japan.

hiroki.waizumi.t5@dc.tohoku.ac.jp

Observation of chemical phenomena caused by molecular adsorption on MoS₂-FET

Abstract

Among the transition metal dichalcogenides (TMD), the only naturally occurring molybdenum disulfide (MoS_2) is also used in field effect transistors (MoS_2 -Field Effect Transistor, MoS_2 -FET). As already reported [1], since it has a very high on/off ratio, its application as a material capable of highly sensitive detection of molecular adsorbed on MoS_2 surface is expected. In addition, when carrier doping was applied to MoS_2 , optical response depending on the electronic structure change of MoS_2 was observed [2]. In this study, we aimed to reproduce carrier doping by charge transfer between adsorbed molecules and MoS_2 , and to detect the change in the electronic structure of MoS_2 as a change in electrical characteristics. As molecules to be adsorbed on MoS_2 , tetracyanoquinodimethane ($(NC)_2CC_6H_4C(CN)_2$, TCNQ) and 2,3,5,6-tetrafluorotetracyanoquinodimethane ($(NC)_2CC_6F_4C(CN)_2$, F4-TCNQ) expected as electron acceptors was selected.

 MoS_2 flake (Fig. 1) was transferred to $SiO_2/p^{++}Si$ substrate using mechanical exfoliation method [3], and Ti/Au electrodes were formed on both ends of MoS2 flake. A schematic diagram of the fabricated MoS_2 -FET is shown in Fig. 2. After TCNQ (electron acceptor) was adsorbed on the MoS_2 channel surface, I_D -V_G curve was obtained by electrical measurement (Keithley 2634B[®], Keithley Instruments). At this time, the drain voltage (V_D) was fixed at +50 mV, and the gate voltage (V_G) was swept in a range of -60 V to +70 V. In addition, the amount of deposited TCNQ was controlled using a film thickness meter (XTM/2 thin film deposition monitor[®], INFICON).

Fig. 3 shows the I_D-V_G curve of the MoS₂-FET as a function the amount of the deposited TCNQ. It is considered that the positive shift of V_{th} and the decrease of the electrical conductivity occur due to the electron transfer from MoS₂ to TCNQ. Furthermore, the change of this I_D-V_G curve was also considered quantitatively. Fig. 4 shows the up take curve of threshold voltage (left) and electron mobility (right). It can be seen that F4-TCNQ (blue) has a larger V_{th} shift in the positive direction than TCNQ (red). V_{th} is closely related to electrical conductivity. Especially, we focused on μ (mobility). The MoS₂ surface is positively charged, which may be caused by coulomb scattering caused by the electrons flowing through the MoS₂ being attracted to it. The large decrease in mobility of F4-TCNQ compared to TCNQ is consistent with the fact that the magnitude of electron affinity for MoS₂ is larger than that of TCNQ.

From the above, it is considered that charge transfer is caused by adsorption of TCNQ and F4-TCNQ molecules on the surface of MoS_2 -FET. Even for a very small amount of coverage, changes in the I_D -V_G curve, threshold voltage, and mobility could be observed clearly. Therefore, MoS_2 -FET will be a very powerful tool for elucidating the chemical reactions that occur with molecules adsorbed on its surface.

In the future, the development to the control of the electronic structure of MoS₂ and the optical response control are also expected. Furthermore, we hope to observe the other phenomena expected to be generated by TCNQ or F4-TCNQ molecules adsorbed on MoS₂ devices (i.g. superconducting).

References

- [1] B. Radisavljevic, et al., Nat. Nanotechnol. 6, 147 (2011).
- [2] K. F. Mak, et al., *Nat. Mater.* **12**, 207 (2013).
- [3] K. S. Novoselov, et al., Science 306, 666 (2004).
- [4] Y. Y. Wang et al., Nanotechnology 23, 495713 (2012).

Fig. 2. MoS_2 -FET and TCNQ adsorption on MoS_2 surface.

Fig. 3. I_D -V_G curve of TCNQ deposition.

Fig. 4. the up take curve of threshold voltage (V_{th}, left) and mobility (μ , right). Red and blue plots are the data of TCNQ and F4-TCNQ respectively.