Katsuaki Sugawara

Yuki Umemoto, Yuki Nakata, Takashi Takahashi, Takafumi Sato

Department of Physics Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, Japan
Contact@E-mail k.sugawara@arpes.phys.tohoku.ac.jp

Electronic structure of atomic-layer VSe_{2} studied by ARPES

The two-dimensional atomic-layer transition-metal dichalcogenides (TMDs) MX2 have been a target of intensive studies since they show novel physical phenomena such as Ising superconductivity [1], spin-valley hall effect [2] and Mott-insulator [3]. Amongst bulk TMDs, VSe_{2} has been also studied since it exhibits a chargedensity wave transition below $\sim 200 \mathrm{~K}$ owing to conventional three-dimensional Fermi-surface nesting [4]. On the other hands, the physical properties of atomic-layer VSe_{2} have not been investigated because of the difficulty in growing high-quality well-ordered atomic-layer materials. To elucidate physical properties of single-layer VSe_{2}, we have fabricated a monolayer film on bilayer graphene by molecular beam epitaxy, and characterized its electronic state by angle-resolved photoemission spectroscopy (ARPES) [4].

As shown in Figure 1, we clearly obseve several dispersive bands along the K- Γ-M high-symmetry line, indicative of the high-quality nature of our growth film. We aloso revealed a metal-to-insulator transition below 140 K in monolayer VSe_{2}.

In this talk, we will discuss the origin of metal-insulator transition in monolayer VSe_{2} and also discuss the similarity and differences in the electronic states between monolayer and multilayer VSe_{2}.

References

[1] X. Xi, et al, Nat. Phys., 12 (2016) 139-143.
[2] D. Xiao, et al, Phys. Rev. Lett., 108 (2012) 196802.
[3] Y. Nakata, et al., NPG Asia Mater., 8 (2016) e31-1-5.
[4] K. Terashima, et al., Phys. Rev. B, 68 (2003) 155108.
[5] Y. Umemoto, et al., Nano Res., 12 (2018) 165-169.

Figure 1: ARPES-intensity plot along the $\mathrm{K}-\Gamma-\mathrm{M}$ cut as a function of wave vector and binding energy for monolayer VSe_{2}. Inset shows the crystal structure of monolayer VSe_{2}.

