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Self-gating in semiconductor electrocatalysis 
 
The semiconductor-electrolyte interface dominates the behaviors of semiconductor electrocatalysis, which has 
been modeled as a Schottky-analog junction according to the classic electron transfer theories (1-4). However, 
this model cannot be used to explain the extremely high carrier accumulations in ultrathin semiconductor 
catalysis observed in our work. Inspired by the recently developed ion-controlled electronics (5-8), we revisited 
the semiconductor-electrolyte interface and unraveled a universal self-gating phenomenon through micro-cell 
based in-situ electronic/electrochemical measurements to clarify the electronic-conduction modulation of 
semiconductors during electrocatalytic reaction. We further unveiled a surface conductance mechanism under 
self-gating that dominates the charge transport in semiconductor electrocatalysts, and demonstrate the strong 
correlation between Then we demonstrate that the type of semiconductor catalysts strongly correlates and their 
electrocatalysis, i.e., n-type semiconductor catalysts favor cathodic reactions such as hydrogen evolution 
reaction (HER), p-type ones prefer anodic reactions such as oxygen evolution reaction (OER), and bipolar ones 
tend to perform both anodic and cathodic reactions. Furthermore, we also propose a model of leakage metal-
insulator-semiconductor (LMIS) junction to describe the aforementioned self-gating phenomenon, i.e., leakage 
ionic gating. It is distinct from the conductance modulation based on Schottky-analog junction in electrochemical 
classic electron transfer theories. Our study provides a new insight into the electronic origin of semiconductor-
electrolyte interface during electrocatalysis, paving the way for designing high-performance semiconductor 
catalysts.  
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Figure 1: Schematic illustration of the surface conductance of semiconductor electrocatalyst. A surface conductive 
pathway is formed when the surface of the semiconductor electrocatalyst is turned on by the electrochemical potential 
under self-gating, allowing the charges transfer via the semiconductor-electrolyte interface, i.e., the electrocatalytic 
reaction happens.  
 
 
 
 
 


