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Spin-orbit splitting engineered broadband resonant second
harmonic generation of artificially stacked heterostructures

Noncentrosymmetric transitional metal dichalcogenides (TMDCs) and their 3R-phase vertical heterostructures
(HSs) provide an ideal platform for studying atomic-scale nonlinear optics, especially second harmonic
generation (SHG).[1,2] TMDC monolayers with tunable energy gaps can be artificially stacked not only to
enhance the SHG efficiency but also to broaden the spectral range for the exciton resonance.[2] Besides,
investigating 2D interfacial phenomena in vertical HSs of two distinct materials are arguably intriguing in the
aspect of linear and nonlinear optics. We synthesized 3R-stacked homo-bilayer, hetero-bilayer structures,
comprised of monolayers of MoS: and its alloy MoS2xSez(x1), and studied their broadband SHG properties in the
distinct coupling regimes. Photoluminescence analysis on all the vertical HSs showed clear intralayer (A- and B-
excitonic) transitions from each constituent layer and interlayer exciton transitions, thereby confirming the
excellent optical quality of the HS system. Especially, wavelength-dependent SHG measurements on the
hetero-bilayer unveiled up to 4 times stronger SHG response over the spectral range of 550 nm to 780 nm. Our
proof-of-concept study indicates that the spectral range for efficient SHG can be engineered by controlling the
Se concentration in the MoS2Sexx-1) layers in well-aligned vertical HS systems, which can tune the spin-orbit-
split A- and B-excitons as well as the bandgap of each constituting layer. The strengthening and widening
effects of SHG are not simply interpreted as the superposition of resonant SHG across the A- and B-exciton
levels from the constituent layers. Nonetheless, our results demonstrate the feasibility of artificial strong second-
order nonlinear optical materials working over a broad spectral range by combining MoS; with different MoSz(:-
xSexx alloys.
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Figure: (a) Schematic for second harmonic generation in a strongly coupled vertical heterostructure comprised of

monolayer (ML) MoS, and MoSy(-1)Sezx, where x is the selenium doping concentration (b) lllustration showing their
relative type Il band alignment. Conduction band minima and valence band maxima are denoted by CBM and VBM,
respectively. Both intralayer A/B-exciton transition and interlayer exciton transition are indicated by pink arrows.



