Matthew Holwill

J. R. Wallbank¹, R. Krishna Kumar^{1;2}, M. Holwill^{1;2}, Z. Wang², G. H. Auton¹, J. Birkbeck^{1;2}, A. Mishchenko^{1;2}, L. A. Ponomarenko³, K. Watanabe⁴, T. Taniguchi⁴, K.S. Novoselov^{1;2}, I. L. Aleiner⁵, A. K. Geim^{1;2}, V. I. Fal'ko^{1;2}

matt.holwill@manchester.ac.uk

Excess resistivity in graphene superlattices caused by umklapp electron-electron scattering

Umklapp processes allow electrons to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in pure metals. Experimental observation of these mechanisms is challenging as they are easily obscured by other dissipation mechanisms. Our recent electron transport studies of graphene-hBN superlattices reveal that umklapp processes dominate the transport characteristics. As the twist angle is reduced, a giant excess resistivity increases degrading the intrinsic carrier mobility over a wide range of temperatures. Aside from fundamental interest, our results have direct implications for the design of possible electronic devices based on heterostructures featuring superlattices.

¹National Graphene Institute, University of Manchester, Manchester, UK

²School of Physics, University of Manchester, Manchester, UK

³Department of Physics, Lancaster University, Lancaster, UK

⁴National Institute for Materials Science, Tsukuba, Japan

⁵Physics Department, Columbia University, New York, USA