Kenjiro Hayashi^{1,2}

Masako Kataoka¹, Hideyuki Jippo^{1,2}, Mari Ohfuchi^{1,2} and Shintaro Sato^{1,2} ¹Fujitsu Laboratories Ltd., Atsugi, Kanagawa, Japan and ²Fujitsu Limited, Kawasaki, Kanagawa, Japan

hayashi.kenjiro@fujitsu.com

Rotationally-oriented MoS₂ grown by Mo-film sulfurization and its application to NO₂ detection

Abstract

Two-dimensional molybdenum disulphide (MoS₂) film has been synthesized by thermal vapour sulfurization of thin Mo film. Figure 1(a) shows transmission electron microscopy (TEM) image of the MoS₂ film transferred on a TEM grid. Selected area electron diffraction (SAED) patterns taken from different spots identified in (a) exhibited nearly identical crystallographic orientations, revealing the rotational alignment of the MoS₂ domains in the film. The film was found to consist of 4~5 layers. The MoS₂ film was also characterized by Raman spectroscopy. As shown in Figure 2(a), the two Raman modes E^{1}_{2g} and A_{1g} are observed at a separation of about 25 cm⁻¹, indicating multilayer formation [1]. MoS₂-channel Field-effect-transistor (FET) fabricated on a SiO₂/Si substrate exhibits n-type semiconducting behaviour (Figure 2(b)), which is consistent with previous reports [2, 3]. Two-terminal FETs exhibited electron mobility ranged from 0.1 to 2.9 cm²V⁻¹s⁻¹ at room temperature which is larger than previously reported values of TVS-grown MoS₂ [4, 5]. The FET-based sensor was found to detect NO₂ with concentrations as low as 7 ppb in N₂ and exhibited resistivity change by an order of magnitude, as shown in Figure 2(c). Therefore, NO₂ with concentration of several hundreds of ppt or lower would probably be detectable.

This research was partly supported by JST CREST Grant Number JPMJCR15F1, Japan.

References

- H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater., 22 (2012) 1385.
- [2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnology, 6 (2011) 147.
- [3] S. Das, H-Y. Chen, A. V. Penumatcha, J. Appenzeller, Nano Lett., 13 (2013) 100.
- [4] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, J. Lou, Small 8 (2012) 966.
- [5] J. Robertson, X. Liu, C. Yue, M. Escarra, J. Wei, 2D Mater. 4 (2017) 045007

Figures

Figure 1: (a) TEM image of MoS₂ (bright region) and SAED patterns taken from the correspond-ing areas labelled in the image. (b) TEM image of a folded MoS₂ film.

Figure 2: (a) Raman spectrum of the MoS2 film. (b) Drain current, I_d , as a function of back-gate voltage, V_g , of a MoS₂-FET. (c) Drain current (I_d) normalized by the initial drain current (I_{d0}) of the MoS₂ sensor when exposed to 7 ppb of NO₂ in N₂ atmosphere.