Cheng-Chu Chung¹

Han Yeh², Po-Hsien Wu¹, Wen-Hao Chang², Chun-Wei Chen¹ ¹Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan ²Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

h10347865@gmail.com

Atomically Layer-Dependent Two-Dimensional Platinum Diselenide/Si heterojunction for Efficient Photoelectrochemical Hydrogen Production

Abstract

Harvesting solar energy for hydrogen production via photoelectrochemical (PEC) water splitting is one of the most promising ways to acquire a renewable and sustainable energy source. To realize this technology, transition-metal-based electrocatalysts have been pervasively adopted as cocatalysts to enhance the performance of PEC device for water reduction. Recently, a newly synthesized Group-10 transition metal dichalcogenides (TMDs) - platinum diselenide (PtSe₂) - have drawn significant attention due to its unique electrical^[1], optical properties and catalytic performance^[2]. This two-dimensional (2D) PtSe₂ shows the most remarkable layer-dependent electrical properties among various 2D materials ranging from metallic to semiconducting behaviors. Thus, it is a rising candidate for energy conversion in 2D photoelectrochemical device due to its high catalytic activity for hydrogen evolution reaction (HER). Here, we demonstrated an atomically layered CVD platinum diselenide (PtSe₂) thin film for a highly efficient heterogenous silicon photocathodes. Through the controlled number of layers, our results show that the 2D layered PtSe₂ catalysts significantly reduce the overpotential and retain a high photocurrent density. The PtSe₂/Si heterostructured photocathode displays an efficient PEC for hydrogen production with a low onset potential of 1 mA/cm² at 0.27 V versus a reversible hydrogen electrode and the high photocurrent density of 28 mA/cm² at 0 V. Most interesting, we clearly observe the dependence of atomic layer number of PtSe₂ on the corresponding PEC conversion efficiency as a result of interfacial band alignment at the PtSe₂/p-Si heterojunction. Our result suggests that 2D atomic layer PtSe₂ can act as an excellent catalyst for efficient PEC conversion for hydrogen production.

References

- [1] Y. L. Wang, L. F. Li, W. Yao, S. R. Song, J. T. Sun, J. B. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Y. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. H. Cheng, S. Y. Zhou, S. X. Du, S. J. Pennycook, S. T. Pantelides and H. J. Gao, Nano Lett, 2015, 15, 4013-4018.
- [2] D. Hu, T. Zhao, X. Ping, H. Zheng, L. Xing, X. Liu, J. Zheng, L. Sun, L. Gu, C. Tao, D. Wang and L. Jiao, Angew Chem Int Ed Engl, 2019, 58, 6977-6981.

Figures

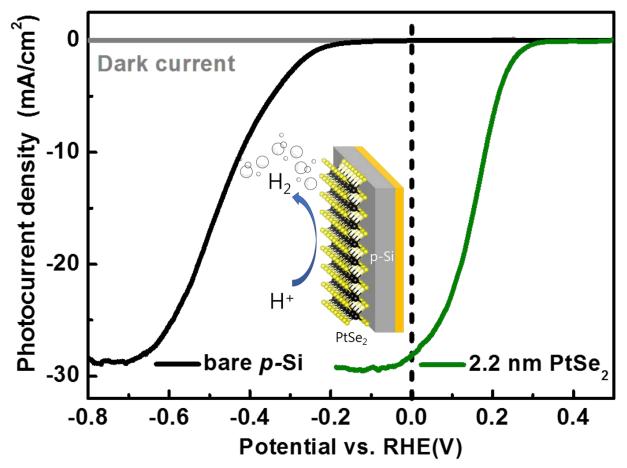


Figure 1: Schematic illustration and polarization curves of the PtSe₂/p-Si heterostructured photocathode.