Zhenyuan Xia^{1,2}

Catia Arbizzani³, Meganne Christian⁴, Vittorio Morandi⁴, Massimo Gazzano¹, Vincenzo Palermo^{1,2}

¹ Istituto per la Sintesi Organica e la Fotoreattività - Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy

² Industrial and Materials Science, Chalmers University of Technology, Hörsalsvägen 7B, 41258 Goteborg, Sweden

³ Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy

⁴ Istituto per la Microelettronica e Microsistemi - Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy

zhenyuan@chalmers.se

Three-Dimensional Multilayer Graphene-Fe₂O₃ Foam Composites and Their Application in Energy Storage

The use of electrochemistry for the preparation of graphene and its derivatives has been intensively studied over the past decade. [1-4] In this work, we demonstrate a unique strategy for the fabrication of multilayer nano-porous iron oxide and graphene structure on three-dimensional graphene foam (GF). The combination of Fe_2O_3 and GF takes the advantage of the high energy storage capacity of the former and the good conductivity of the former structure. Precise control of the Fe_2O_3 mass loading was achieved by an electrochemically exfoliated graphene oxide (EGO) to Fe_2O_3 facilitates the uniform coating of EGO on the surface of iron oxide. Alternating multilayer structures of EGO and Fe_2O_3 were realized thanks to the unique properties of EGO as both a spacer and current collector (figure 1). The composite could be used directly as a binder-free anode in Li-ion batteries, demonstrating the viability of this approach for high yield and scalable production of graphene/metal oxide composites.

References

- [1] S. Yang, et al., Adv. mater, 28 (2016) 6213
- [2] Y. Xia, V. Morandi, V. Palermo, et al., Ad. Funct. Mater, 23 (2013) 4684
- [3] Z. Y. Xia, V. Palermo et al., Carbon, 84 (2015) 254
- [4] Z. Y. Xia, V. Palermo et al., FlatChem, 3 (2017) 8

Figures

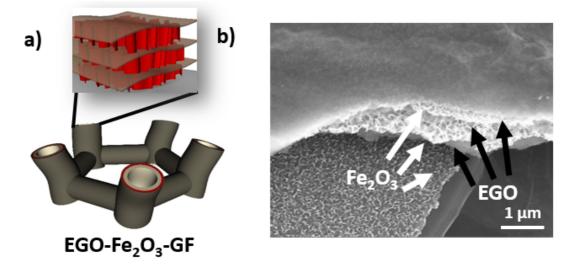


Figure 1: a) Schematic illustration of the multilayer EGO-Fe₂O₃-GF architecture; b) SEM image of the corresponding EGO-Fe₂O₃-GF sample