Minwoong Joe¹

Jinhwan Lee¹, and Changgu Lee^{1, 2}

¹ School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea

² SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea

mjoe122@gmail.com

Dominant in-plane cleavage direction of CrPS₄ monolayer

In-plane cleavage directions of 2D crystals are displayed and often well-defined in their flakes exfoliated by the widely-used scotch-tape method. Here, we investigate the correlation between dominant in-plane cleavage direction and elastic properties in different directions. CrPS₄ flakes show a preferential in-plane cleavage direction of 67.5°, corresponding to <110> direction. To explain it, we calculated directional dependence of Young's modulus and fracture energy using first-principles density functional theory calculations. We found that fracture energy is directly relevant to the in-plane cleavage direction of CrPS₄. Our study can provide a facile approach to figure out the direction of 2D crystals without complex characterization process, which is valuable for material processing of 2D materials.

References

[1] Joe, M. et al. A comprehensive study of piezomagnetic response in CrPS₄ monolayer: mechanical, electronic properties and magnetic ordering under strains. J. Phys. Condens. Matter 29, (2017) 405801.

Figures

Figure 1: Stress-strain curve of monolayer CrPS₄ under different uniaxial directions.