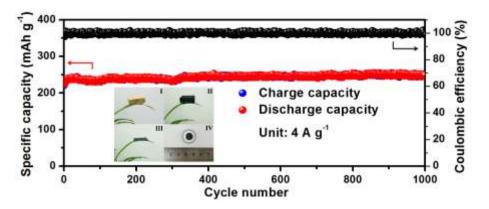
Xi Dai Fang Wan, Linlin Zhang, Hongmei Cao, Zhiqiang Niu Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China

daixi@mail.nankai.edu.cn, zqniu@nankai.edu.cn


Freestanding graphene/VO₂ composite films for highly stable aqueous Zn-ion batteries with superior rate performance

Aqueous Zn-ion batteries (ZIBs) are promising energy storage systems owing to their high safety and low cost.^[1] However, their unsatisfactory energy and power densities as well as the cycling performance have hindered their practical application. Herein, we demonstrate a highly reversible zinc/vanadium dioxide system, where freestanding reduced graphene oxide/vanadium dioxide (RGO/VO₂) composite films are used as the cathodes. Owing to the synergistic effects from continuously porous network of RGO^[2] and the robust structure of VO₂, RGO/VO₂ composite films not only enhance the transport of electrons and ions, but also accommodate the considerable deformations caused by Zn²⁺ extraction/insertion. Therefore, the Zn/VO₂ batteries exhibit an energy density of 65 Wh kg⁻¹ even at a high power density of 7.8 kW kg⁻¹. More impressively, they deliver excellent capacity retention of 99% after 1000 cycles. In addition, the RGO/VO₂ composite films can serve as the electrodes of flexible ZIBs. Flexible soft-packaged Zn/VO₂ batteries demonstrated stable electrochemical performance at various bending states. Therefore, the rechargeable Zn/VO₂ battery can bridge the gap between conventional batteries and supercapacitors, opening new opportunities for powering portable electronic devices and hybrid electric vehicles.

References

[1] Fang Wan, Linlin Zhang, Xi Dai, Xinyu Wang, Zhiqiang Niu & Jun Chen. Nat. Commun. 1 (2018).

[2] Zhiqiang Niu, Lili Liu, Li Zhang, Qi Shao, Weiya Zhou, Xiaodong Chen, Sishen Xie. Adv. Mater. 22 (2014).

Figure

Figure: Long-term cycling performance with Coulombic efficiency of the RGO/VO₂ composite film at 4 A g⁻¹. The inset shows the optical images of corresponding samples. I: NH_3VO_4/GO foam through freeze-drying; II: RGO/VO₂ foam via calcination; III: freestanding RGO/VO₂ electrode film after mechanical compression; IV: the desirable piece of RGO/VO₂ composite film electrode for ZIBs.