Chang-Hsiao Chen^{1,*}

Han-Ching Chang¹, Chien-Liang Tu¹, Kuang-I Lin², Jiang Pu³, Taishi Takenobu³, Chien-Nan Hsiao⁴

¹Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan ²Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan ³Department of Applied Physics, Nagoya University, Nagoya, Japan

⁴Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan

chsiaoc@fcu.edu.tw

Chemical Vapor Deposition Synthesis of Large-Area Monolayer InSe

Recently, two-dimensional materials of indium selenide (InSe) layers have attracted much attention from scientific community due to their high mobility transport and fascinating physical properties.[1-3] To date, reports on synthesis of high quality and scalable InSe atomic films have been limited. Here, we report that a synthesis of InSe atomic layers by vapor phase selenization of In_2O_3 in a chemical vapor deposition (CVD) system, resulting in large-area monolayer flakes or thin films.[4] The atomic films are continuous and uniform over a large area of 1 x 1 cm², comprising of primarily InSe monolayers. Spectroscopic and microscopic measurements reveal the highly crystalline nature of the synthesized InSe monolayers. The ion-gel-gated field-effect transistors based on CVD InSe monolayers exhibited n-type channel behaviors, where the field effect electron mobility values can be up to ~30 cm²/Vs along with an on/off current ratio, of >10⁴ at room temperature. In addition, the graphene can serve as a protection layer to prevent the oxidation between InSe and the ambient environment. Meanwhile, the synthesized InSe films can be transferred to arbitrary substrates, enabling possibility of reassembly of various two-dimensional materials into vertically stacked heterostructures, prompting research efforts to probe its characteristics and applications.

References

- [1] Denis A. Bandurin et al., Nature Nanotechnology, 12 (2016) pp 223-227
- [2] Po-Hsun Ho et al., Acs Nano, 11 (2017) pp 7362-7370
- [3] Sukrit Sucharitakul et al., Nano Letters, 15 (2015) pp 3815-3819
- [4] Han-Ching Chang et al., Small, (2018) doi: 10.1002/smll.201802351

Figures

Figure 1: (Left) Cross-section TEM image of a monolayer InSe film, (Right) Linear scale transfer curve of the InSe FET.