Atsushi Ando

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

atsushi-ando@aist.go.jp

Morphology and electrical studies on NaCI-assisted CVD synthesis of WS₂

Atomically thin two-dimensional materials such as transition metal dichalcogenides (TMDC), have been attracted a great deal of attention due to their electronic properties [1]. For the applications of various sensors and low power field effect transistors (FETs), thin films growth of TMDC with large area and uniformity is essential. Recently, alkali-metal halide assisted chemical vapor deposition (CVD) growth of TMDC have been attracted attention because alkali metal halide can reduce the density of nuclei and promote two-dimensional lateral growth [2]. In this work, I report a CVD growth of WS₂ with the assistant of NaCI and investigate the morphology and electrical characteristics of the CVD-grown WS₂.

The NaCl-assisted CVD experimental setup is shown in Fig. 1(a). WO₃ (99.99 %) precursor (~0.02 g) with one drop of 2N NaCl (~0.04 g) was put in the center of the one-zone CVD furnace. Sulfur (99.99 %) precursor (~0.5 g) was put 5 cm away from the end of the furnace and was heated with a heating tape independently. Two 285 nm SiO₂ / p⁺⁺-Si (100) substrates with SiO₂ surfaces facing each other were placed about ~1 cm downstream from the WO₃ precursor. One 285 nm SiO₂ / p⁺⁺-Si (100) substrates facing down was also placed just above the WO₃ precursor. The CVD growth was performed at atmospheric pressure using 35-40 sccm 3% H₂/Ar as the carrier gas. Typical temperature programming process of WO₃ and S precursors during WS₂ growth is shown in Fig. 1(b).

The size of the CVD-grown WS₂ was estimated by optical microscope images (Fig. 2(a)). Thickness and surface morphology of the WS₂ were measured by atomic force microscope (AFM: Digital Instruments, Nanoscope IIIa) measurements (Figs. 2(b) and 2(c)). The quality of the WS₂ was evaluated by Raman spectra compared to mechanically exfoliated bulk WS₂ (Fig. 3(a)). Two different types of WS₂ deposition were observed: one was normal triangular shape WS₂ and another was WS₂ in a etched pit. The existence of the pits suggests that etching of SiO₂ occurred during the WS₂ formation process [3].

For electrical characterizations, source and drain electrodes were formed on the as-grown WS₂ by the standard photolithography process with AZ5214E photoresist (Clariant). Cr/Au (10/50 nm), Ti/Au (10/50 nm) and Au (60 nm) metal electrodes were examined. Before metal depositions, the surfaces of the WS₂ were modified by O₂ plasma treatment (5 s) performed with a resist strip system (Diener electronics, Nano). The device channel lengths were 2000-6000 nm. Figure 3(b) shows an optical microscope image of a fabricated FET with Ti/Au (10/50 nm) source and drain electrodes. Thickness and surface morphology of the WS₂ channel were estimated by AFM measurements (Figs. 3(c) and 3(d)). Electrical characterization of the WS₂ FETs was performed with a semiconductor parameter analyzer (Keithley 4200-SCS) in room temperature and under ambient conditions. Figure 4 shows drain-source (Id-Vd) characteristics at various gate voltages (Vg) for (a) pristine WS₂ FET as shown in Fig. 3, (b) the same WS₂ FET annealing at 225 °C under a 300 sccm 3% H₂/Ar gas flow for 3.5 h, (c) the same WS₂ FET additionally annealing at 225 °C under a 300 sccm 3% H₂/Ar gas flow for 2 h (Total 5.5 h). Annealing process in 3% H₂/Ar gas flow is effective for improvement of electrical contacts at metal-WS₂ interfaces. The detailed results will be discussed at the presentation.

References

- [1] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature Nanotech., 6 (2011) 147.
- [2] S. Li, S. Wang, D. M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg and G. Eda, Appl. Mater. Today, 1 (2015) 60.
- [3] K. N. Kang, K. Godin and E.-H. Yang, Sci Rep., 5 (2015) 13205.

Figures

Figure 1: (a) Schematic illustration of the CVD experimental setup. (b) Temperature programming process of WO_3 and S precursors.

Figure 2: (a) Optical microscope image of the CVD-grown WS₂. (b) AFM image of the WS₂ at the same area in (a). (c) Cross-section profile between A and B in (b).

Figure 3: (a) Raman spectra of the bulk WS_2 and the CVD-grown WS_2 on SiO_2 measured at different points (I and II in Fig. 2(a)). (b) Optical microscope image of the CVD-grown WS_2 FET. (c) AFM image of the WS_2 at the same FET in (b). (d) Cross-section profile between A and B in (c).

Figure 4: Drain-source (Id-Vd) characteristics at various gate voltages Vg for (a) pristine WS₂ FET as shown in Fig. 3, (b) the same WS₂ FET after annealing at 225 °C under a 300 sccm 3% H₂/Ar gas flow for 3.5 h, (c) the same WS₂ FET after additionally annealing at 225 °C under a 300 sccm 3% H₂/Ar gas flow for 2 h (Total 5.5 h).