Advances in 2D materials production: from R&D to commercialization

Dr. Paul Wiper Business Development Specialist <u>p.wiper@aixtron.com</u> RPGR 2017

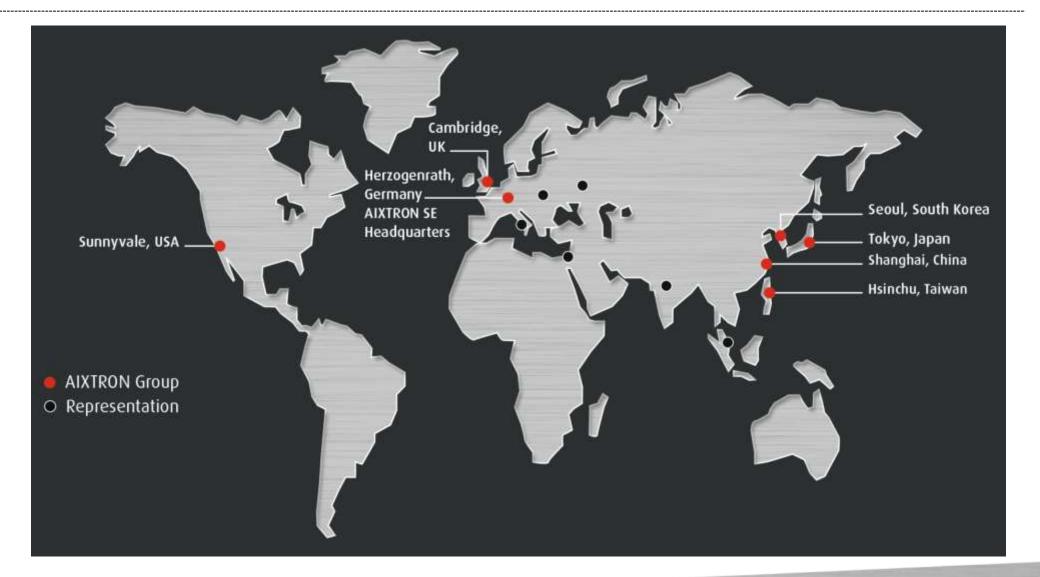
About us

Our Technologies and Products

BM Graphene and CNT Product Lines

BM 2D Materials Product Lines

Who we are

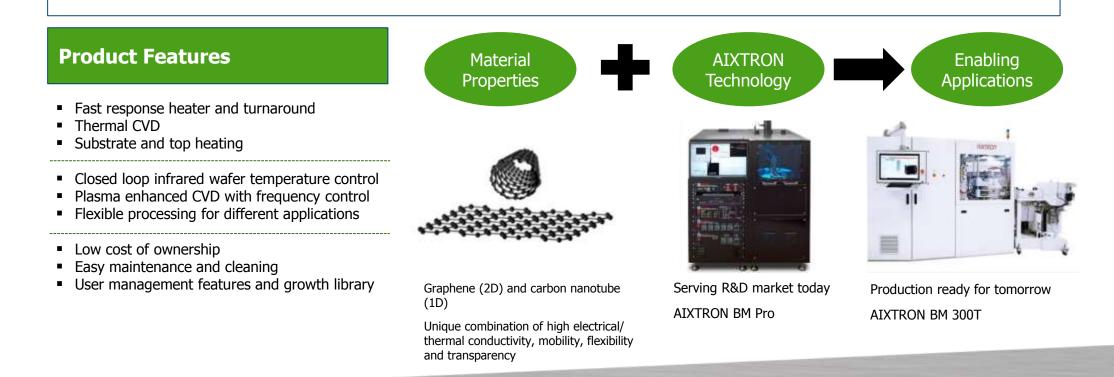


- Headquarters based in Herzogenrath, Germany
- Worldwide presence with 13 sales/representatives offices and production facilities
- Company founded in 1983 over 30 years of experience
- ~ 760 employees

- Technology leader in deposition systems
- More than 3,000 deposition systems delivered all over the world
- State of the art R&D center and demo facilities
- Annual R&D budget of approx. € 60 Million

Global Presence

Our system solutions address multiple key markets


Compound		Silicon	Organics	1D & 2D Materials	
MOCVD		ALD • MOCVD OVPD [®] • PVPD [™] • PECVD		CVD • PECVD	
Opto Electronics	Power Electronics	Memory & Logic	Organic Electronics	Graphene, CNTs & 2D	
 LEDs for display: TVs, mobile phones, tablets, etc. LEDs for lighting LEDs for automotive LEDs for data communication Telecom lasers Concentrator photovoltaics 	 RF transistors AC-DC converters DC-DC converters Solar inverters Solar inverters Motor drives in industrial applications automotive and consumer electronics 	 DRAM dielectric and metal electrode Flash inter poly dielectric and metals Logic gate stack ReRAM and PCRAM active element and electrode Logic high mobility channel 	 OLEDs for display: TVs, mobile phones, tablets, etc. OLEDs for lighting Organic and flexible electronics Organic photovoltaics 	 Transistors Interconnects Flexible electronics Energy storage Sensors Composites 	
000000000	mann	Con Marine	0:0		
AIX R6 (GaN) AIX G5 HT • AIX G5+ (GaN) AIX 2800G4-TM (As/P)	AIX G5 HT • AIX G5+ (GaN) AIX G5 WW (SiC)	QXP 8300 ALD LYNX-iXP	R&D systems: OVPD®-200 • PRODOS-200 OEC-200 • OPTACAP-200 Production systems up to Gen 8.5	BM R&D • BM Pro BM Pro HT • BM GB BM 300T	

Carbon – PECVD

Graphene and Carbon Nanotube Deposition Systems

- Proprietary thermal and plasma enhanced chemical vapour deposition technology
- Excellent uniformity and reproducibility with fast turnaround cycle times
- BM platform: BM R&D (2-inch), BM Pro (4-inch and 6-inch), BM GB (4-inch glovebox), BM HT (high temperature, 1700°C), BM 300T (300 mm)
- Graphene and carbon nanotube films for electronics, energy storage, thermal management, sensors and flexible/transparent applications

BM product line: key technology for carbon deposition

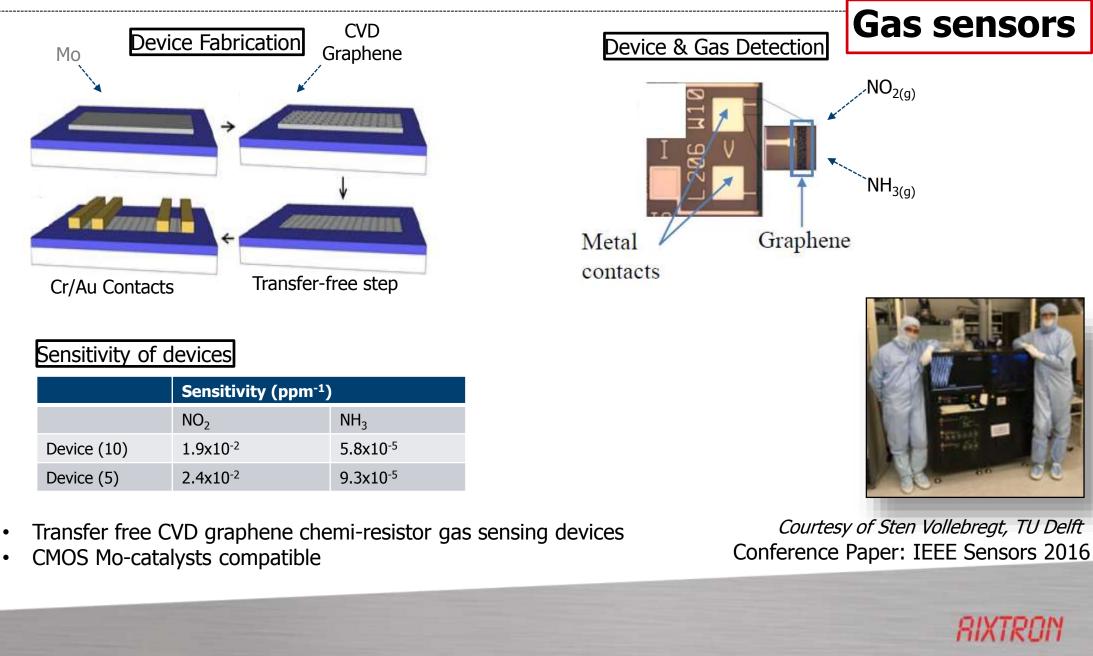
Various patents granted/applied

- Showerhead innovation
- Uniform gas distribution
- Top and bottom heaters
- High temperature ramp rates
- High throughput and reproducibility
- Cold wall reactor design
- Simple user-interface

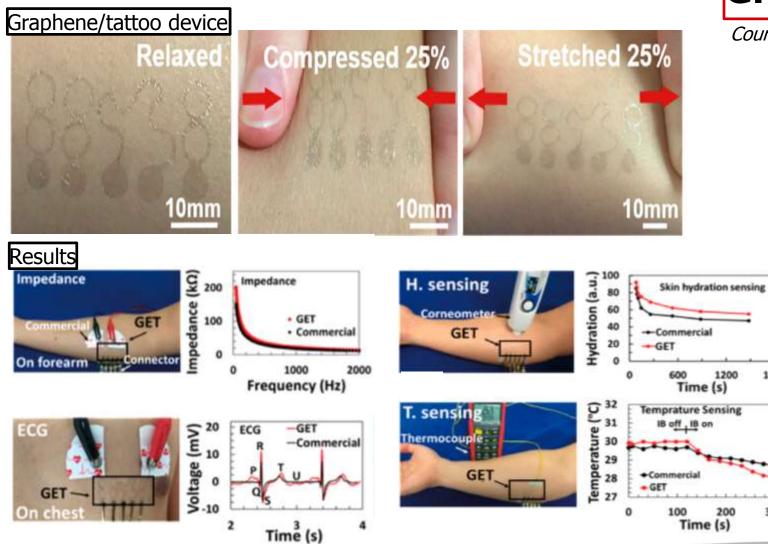
BM product line for graphene / CNT growth on foil

Towards large scale industrial applications

R&D tool: 4-inch/6-inch Batch tool: BM Pro 8"x8" foil R2R Production tool: Demo tool on 300mm foil web width



BM product line: Carbon deposition systems portfolio



BM Pro 2, 4 & 6-inch Systems: Academic and R&D Markets

BM Pro 2, 4 & 6-inch Systems: Academic and R&D Markets

Graphene Tattoos

Courtesy of Deji Akinwande, UT Austin

1800

300

ACS Nano, 2017, 11 (8)

BM product line: BM 300T: *Electronic & Optoelectronic Markets*

BM 300T – 12" For your production needs

Customer results

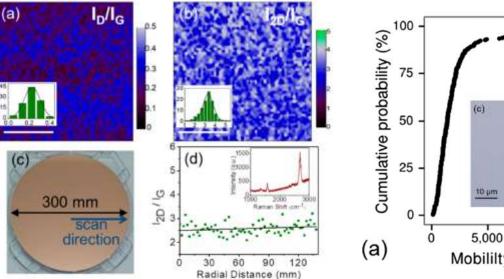
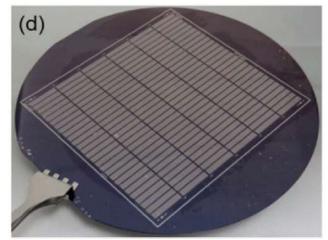

Toward 300mm wafer process for graphene transistors

TABLE 1. Comparison of the Material and Electrical Properties of Reported Wafer-Scale Polycrystalline and Single-Crystalline Graphene


ubstrate/size (mm) I _{2D} /I _G		I _D /I _G	$\mu_{ m max}$ (cm²/(V s))	residual carrier density ($ imes$ 10 ¹¹ cm ⁻²)	ref	
Cu film/100—300	2.6-3.3	0.03-0.22	15 660	3.4—29	this work	
Cu film/200	1.8	0.13	3800	1.49 ^{<i>d</i>}	Gao, 2014 ¹¹	
Ge(110) ^a /50	3.5	0.03	10 600	3 ^d	Lee, 2014 ¹⁰	
SiC ^a / 100	1.6-1.9	0 ^b	2700	10-100	Kim, 2013 ⁸	
Cu film/100	3	0.2	4900	10^d	Tao, 2012 ¹²	
Cu film/150	4.5	0.3	23 000 ^c	10—40	Heo, 2011 ¹³	
Ni/Cu films/75	3.5	0.25	3000	28^d	Lee, 2010 ⁹	

Rahimi et al, ACS Nano DOI:10.1021/nn5038493

(c) Non-Infrusive cordiact pads (TuPd) 10 µm 0 5,000 10,000 15,000 Mobilility (cm²/Vs)

RIXTRON

Introducing BM Spider Roll-to-roll equipment for deposition on foil

BM Spider key technical features

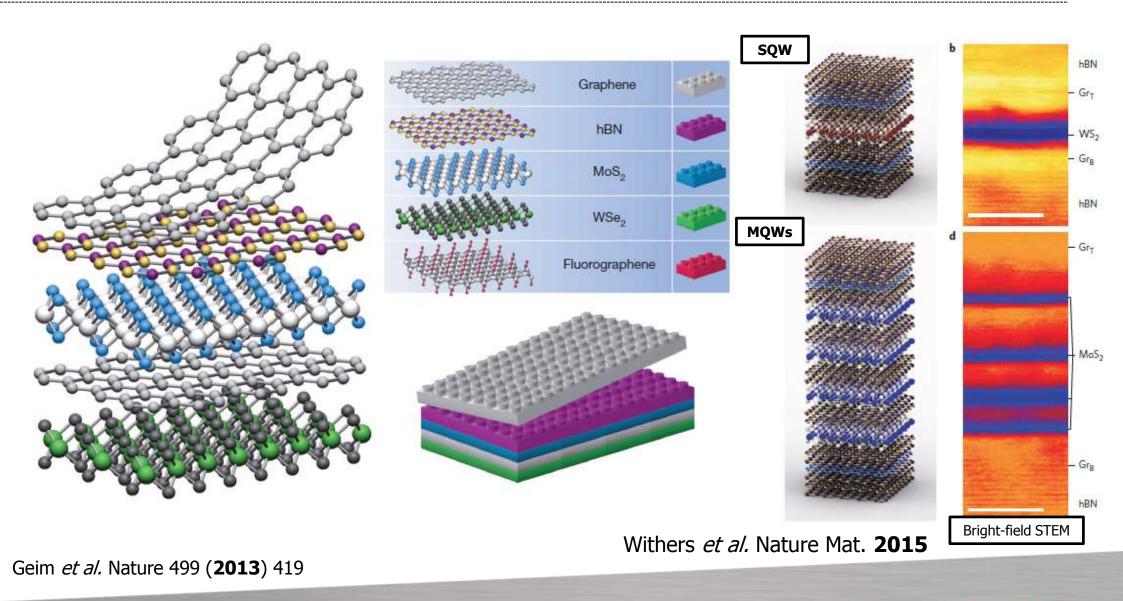
- Independent annealing and growth zones
- Showerhead gas distribution
- Adjustable temperature up to 1000 C
- Non vacuum process

- Foils and/or sheets up to 100um thick and 300mm wide
- Auto webbing system
- Speeds up to 8m/hr (for carbon based materials)
- Small footprint (4.5m x1.6m)

BM Spider: R2R Graphene and CNT Coating Applications

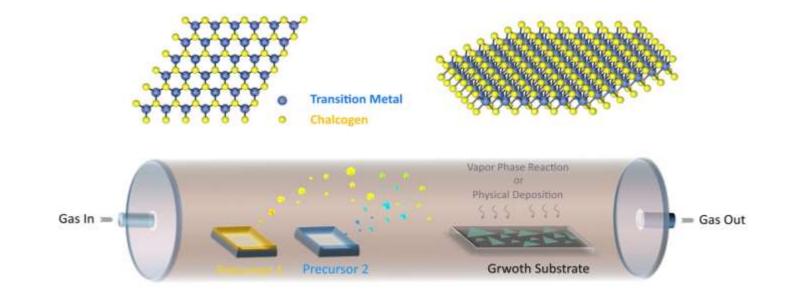
BM 2D Systems: Your 2D Platform

P



Beyond graphene...

1. Graphene related	2. 2D Chalcogenides	3. 2D Oxides	4. Others
Graphene Graphane Fluorographene Graphene oxide	Transition metal dichalcogenides (TMDs) MX ₂ ; MoS ₂ , WS ₂ , MoSe ₂ , WSe ₂ etc.	Transition metal oxides (TMOs) Ti/Nb/Mn _x O _y V ₂ O ₅	MAX Phases M = transition metal A = Al or Si X = C or N
hBN Black phosphorous	Transition metal trichalcogenides (TMTCs) MX_3 ; NbX ₃ , TiX ₃ , TaX ₃ (X = S, Se or Te)	Trioxides MO ₃ , WO ₃ , TaO ₃	Metal halides, MX ₂ or MX ₃ MoCl ₂
	Transition metal phosphorous trichalcogenides (TMPTCs) MPX ₃ ; MnPS ₃ , ZnPS ₃ , NiPS ₃	Oxychalcogenides Oxyhalides	Layered silicates Layered double hydroxides (LDHs)
	Group III-VI "Semiconductors" GaX, InX (X = S, Se, Te)	Layered zirconium phosphates and phosphonates	Xene's Silicene etc.


RIXTRON

Heterostructures and Devices

Tube-based CVD furnace systems

Limitations

- Limited precursors
- Difficult to control uniformity over large areas
- Safety issues

Chem. Soc. Rev., 9, 2015

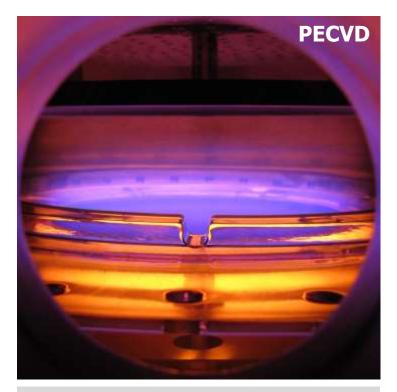
BM 2D Systems – Your 2D Platform

Benefits:

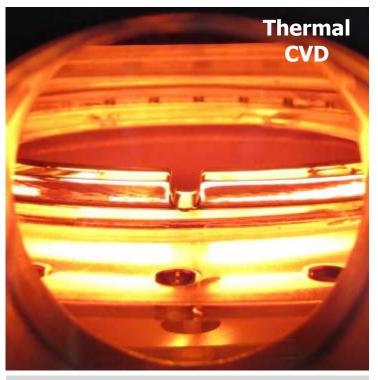
- Up to 8-inch substrate size
- Wafer and foil compatible
- Bottom and top heater technology
- Up to 10 gas channels
- Up to 5 MO sources
- Temperatures up to 1050 °C

BM GB 2D – for complex materials deposition

BM GB 2D


Benefits:

- 4-inch substrate size
- Sensitive materials
- Bottom and top heater technology
- Up to 10 gas channels
- Up to 8 MO sources
- Temperatures up to 1050 °C


Growth process

Multiple processes available

Benefits

- Adjustable plasma position
- Top plasma for precursor activation
- Substrate plasma for growth alignment
- In-situ reactor cleaning

Benefits

- Temperatures up to 1000C
- Heat ramps > 300 C/min
- Excellent gas uniformity

Source types

MO type

Vapor draw type source

Gas type

source

source

Flexible source choice

Benefits

- Wide process window
- Temperature control for precursors
- Carrier gas controlled

Benefits

- Less expensive than MO
- Narrow process window (WP below precursor VP)
- Temperature control for precursors

- Benefits
- MFC controlled gases
- Metal and chalcogenides
 precursors possible

Different source combinations available for process
 flexibility

Туре	Name	Chemical formula	CAS	Phase	Vapour pressure
metal	Molybdenum hexacarbonyl	Mo(CO)6	13939-06-5	solid	1.4mbar @45C
metal	Tungsten hexacarbonyl	W(CO)6	14040-11-0	solid	1.6mbar @67C
metal	Niobium (V) ethoxide	Nb(OCH2CH3)5	3236-82-6	liquid	no data available
metal	Tris(diethylamido)(tert-butylimido)niobium(V)	C16H39N4Nb	210363-27-2	liquid	no data available
chalcogenide	Di-tert-butyl disulfide (DTBS)	C8H18S2	110-06-5	liquid	68 mbar @37.7C
chalcogenide	Diethyl sulfide	C4H10S	352-93-2	liquid	53mbar @16C and 140mbar @37.7C
chalcogenide	Dimethyl selenide	C2H6Se	593-79-3	liquid	no data available
chalcogenide	Dimethyl telluride	C2H6Te	593-80-6	liquid	no data available

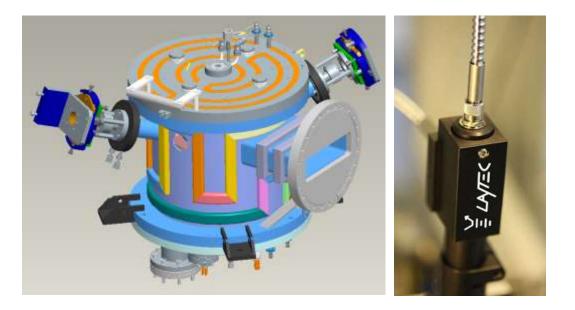
MO by-products safety

Benefits

- Cooled two stage filtration for unreacted MO precursors condensation
- Improved pump lifetime
- Easy filter regeneration
- Oxidation furnace available

Maintenance

Easy to maintain


Benefits

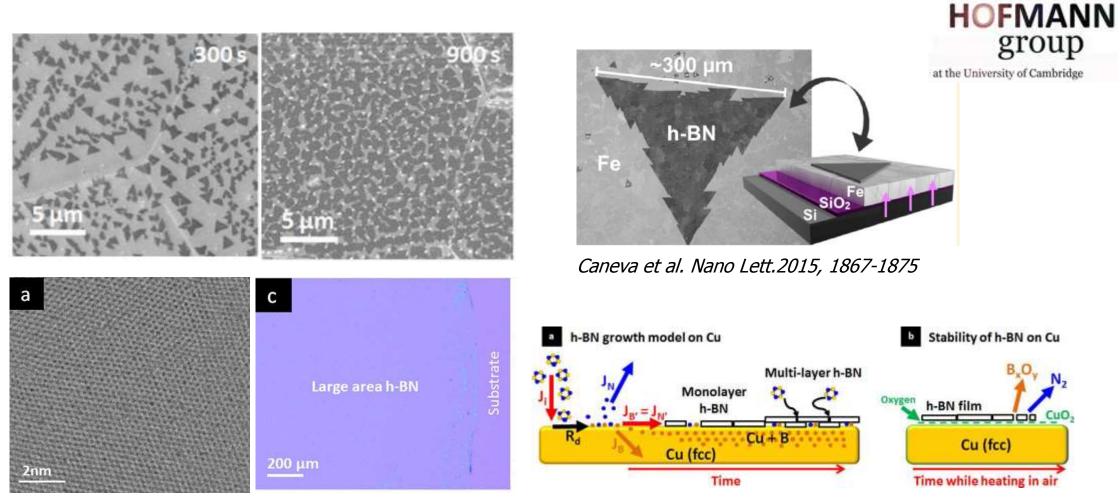
- "Plug and play" parts concept
- Changeable quartzware for different processes
- Easy access to reactor inside

In-situ and low pressure options

Ports for in-situ measurements

Low pressures (<10⁻⁵ mbar) compatible

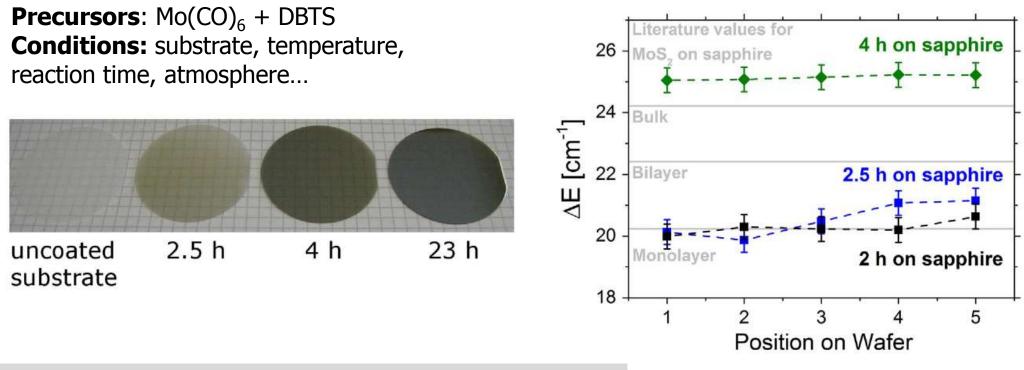
- Sample temperature measurement
- In-situ ellipsometry for thickness and growth quality
- Turbo pump integration for low pressure processes



Customer results

Courtesy of S. Hofmann

the


Exploring h-BN Growth using BM Systems

Kidambi et al. Chem. Mater., 2014, 26 (22), pp 6380–6392

RIXTRON

Internal Process and Optimisation for MoS₂ Growth using MOCVD

- Direct deposition of MoS₂ on 2-inch sapphire wafers
- Homogenous monolayer achieved

Marx et al. Journal of Crystal Growth 464, 100-104, 2017

RIXTRON

Thank you very much for your attention.

If you have any further questions or require more information, please contact us at:

AIXTRON SE Dornkaulstr. 2 52134 Herzogenrath Germany Phone +49 (2407) 9030-0 Fax +49 (2407) 9030-40 E-Mail info@aixtron.com

