Electronic band structure and van der Waals coupling of ReSe₂ revealed by high-resolution ARPES

[Sci. Rep. 7, 5145 (2017), arXiv:1704.00175]

L. S. Hart, J. L. Webb, S. Dale, S. J. Bending, D. Wolverson

RPGR 2017, Singapore, 19 – 22/09/2017

A.K. Geim and I.V. Grigorieva, Nature **499**, 419 (2013)

Graphene family	Graphene	hBN 'white graphene'			BCN	Fluorograph	ene	Graphene oxide
2D chalcogenIdes	MoS ₂ , WS ₂ , MoSe ₂ , WSe ₂		Semiconducting dichalcogenides: MoTe ₂ , WTe ₂ , ZrS ₂ , ZrSe ₂ and so on		Metallic dichalcogenides: NbSe ₂ , NbS ₂ , TaS ₂ , TiS ₂ , NiSe ₂ and so on			
					Layered semiconductors: GaSe, GaTe, InSe, Bi ₂ Se ₃ and so on			
2D oxides	Micas, BSCCO	MoO ₃ , WO ₃		Perovskite-t LaNb ₂ O ₇ , (Ca,Sr Bi ₄ Ti ₃ O ₁₂ , Ca ₂ Ta ₂ TiC		type:) ₂ Nb ₂ O ₁₀ ,	Hydroxides: Ni(OH) ₂ , Eu(OH) ₂ and so on	
	Layered Cu oxides	TiO_2 , MnO_2 , V_2O_5 , TaO_3 , RuO_2 and so on				D_{10} and so on	Others	

н т

Real and reciprocal lattices of ReSe₂

Real and reciprocal lattices of ReSe₂

(Not quite) **1T**' – top view

- Low symmetry (group $P\overline{1}$)
- Characteristic chains of Re "lozenges"
- The *c*-axis not perpendicular to the layers
- However, inversion symmetry present even in monolayers [in contrast to semiconducting MoS₂ which has a mirror plane]

Questions:

- Where is the valence band maximum?
- Is the interlayer coupling significant?
- How significant is the distortion-induced anisotropy?

Real and reciprocal lattices of ReSe₂

1)
$$\hbar \omega + (E_0 + \varepsilon_k) = E_{el} + V_0$$

2) $\hbar (k_x + k_y) = p_{\parallel}$
valence band bottom

1)
$$\hbar \omega + (E_0 + \varepsilon_k) = E_{el} + V_0$$

2) $\hbar (\mathbf{k}_x + \mathbf{k}_y) = \mathbf{p}_{\parallel}$

1) $\hbar \omega + (E_0 + \varepsilon_k) = E_{el} + V_0$ 2) $\hbar (\mathbf{k}_x + \mathbf{k}_y) = \mathbf{p}_{\parallel}$

(simulated)

- I. Handling wave vector perpendicular to the layers
 - Dispersion along k_z implies significant interlayer coupling
 - Knowledge of c
 ^{*} allows determination of the inner potential and assignment of the Γ and Z points

1)
$$\hbar\omega + (E_0 + \varepsilon_k) = E_{el} + V_0$$

2) $\hbar(k_x + k_y) = p_{\parallel}$
 \vec{a}^*
 \vec{b}^*
 \vec{b}^*

- II. Studying $k_z = 0$ plane
 - No periodicity in the (k_x, k_y) plane
 - VBM away from the Γ point?

1)
$$\hbar \omega + (E_0 + \varepsilon_k) = E_{el} + V_0$$

2) $\hbar (\mathbf{k}_x + \mathbf{k}_y) = \mathbf{p}_{\parallel}$

Low

- III. Studying in-plane anisotropy
 - Chain-like ARPES features perpendicular to the Re chains
 - Dispersion flatter between chains than along chains weaker coupling

1)
$$\hbar \omega + (E_0 + \varepsilon_k) = E_{el} + V_0$$

2) $\hbar (\mathbf{k}_x + \mathbf{k}_y) = \mathbf{p}_{\parallel}$

- III. Studying in-plane anisotropy
 - Chain-like ARPES features perpendicular to the Re Chains
 - Dispersion flatter between chains than along chains weaker coupling

1)
$$\hbar \omega + (E_0 + \varepsilon_k) = E_{el} + V_0$$

2) $\hbar (\mathbf{k}_x + \mathbf{k}_y) = \mathbf{p}_{\parallel}$

- III. Studying in-plane anisotropy
 - Chain-like ARPES features perpendicular to the Re Chains
 - Dispersion flatter between chains than along chains weaker coupling

- III. Studying in-plane anisotropy
 - Chain-like ARPES features perpendicular to the Re chains
 - Dispersion flatter between chains than along chains weaker coupling
 - Effective mass perpendicular to the Re chains almost twice that of the value along the chains

- IV. Where is the valence band maximum?
 - Not at the Γ point
 - Not positioned along any of the high-symmetry directions

- Highly anisotropic valence band (effective mass doubled in direction perpendicular to Re chains as compared to along the chains)
- Significant interlayer coupling how does the spectrum change when moving to monolayer?
- We find the valence band maximum located away from the Γ point, not in any high-symmetry direction