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Why	is	it	important/interesDng?	
1.  Measures	pure	electron-electron	interacDon.		
	
2.  New	and	interesDng	physics.		
-  Integer	and	fracDonal	Hall	drag	effects	
-  Long-lived	indirect	excitons	
-  Excitonic	superfluidity	

3.  Smoking	gun		experiment	for	the	indirect	exciton	
condensate	

	
4.  Renewed	interest	in	Coulomb	drag	with	new	2D		

	materials.	
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Why	graphene?	
1.  Electrons	confined	to	a	2D	atomic	plane.		

2.  Unprecedentedly	small	layer	separaDons	~	1	nm	
allow	for	strong	interlayer	interacDons.		

3.  Tunable	charge	densiDes	allow	exploraDon	of	both	
high	and	low	density	regimes.		

	
4.			Other	2D	materials	(TI’s,	black	phosphorous,	etc)	

	are	of	interest	too.	
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Lots	of	theoreDcal	work	has	been	done	
Parabolic	2D	Electron	Gas	 Dirac	Fermions	

1.  Jauho	&	Smith,	PRB	(1993)	
2.  Vignale	&	MacDonald,	PRL	(1996)	
3.  Many	more…	

1.  Tse	et	al,	PRB	(2007)		
2.  Narozhny	et	al,	PRB	(2012)	
3.  Many	more…	
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Ĵ(Q) = Ĵ(E) (9)

e =
HvF lel�min

T�
(10)

� = �min +
vF lele

2n2

H
(11)

L =
e

�T
(12)

1

•  Our	moDvaDon:	How	well	does	this	standard	theory	agree	with	
																																		graphene	experiment?	
	

‘Momentum’	drag	



Lots	of	theoreDcal	work	has	been	done	
Parabolic	2D	Electron	Gas	 Dirac	Fermions	

1.  Jauho	&	Smith,	PRB	(1993)	
2.  Vignale	&	MacDonald,	PRL	(1996)	
3.  Many	more…	

1.  Tse	et	al,	PRB	(2007)		
2.  Narozhny	et	al,	PRB	(2012)	
3.  Many	more…	

V (q,!, d) =
1

✏
d

(q,!, d)

2⇡e2e�qd

q
(1)

�
D

=

1

16⇡k
B

T

1Z

�1

d2q

(2⇡)2

1Z

�1

d!

sinh

2

(

~!
2kBT

)

�

x

(!,q,
µ
A

k
B

T
)�

x

(!,q,
µ
P

k
B

T
)|V (q,!, d)|2

(2)

✓
j
A

0

◆
=

✓
�
A

�
D

�
D

�
P

◆✓
E

A

E
P

◆
. (3)

⇢
D

⇡ � �
D

�
A

�
P

(4)

⇢
D

=

E
P

j
A

(5)

�
D

⌘ �
D

(n
A

, n
P

) (6)

sign(�
D

) = sign(n
A

)sign(n
P

) (7)

sign(⇢
D

) = �sign(�
D

) (8)

⇢
D

=

E
P

j
A

(9)

�(n) = �(�n) (10)

⇢
D

= � �
D

�
A

�
P

(11)

sign(⇢
D

) = �sign(n
A

)sign(n
P

) (12)

�
D

(n
A

,�n
P

) = �
D

(�n
A

, n
P

) = ��
D

(n
A

, n
P

) (13)

F ti

ext

= �F it

ext

= @
i

µ
0

(14)

1

⇢D / VP

IA
(1)

Z 1

�1
dn0

PPmono

(n0
P)
�P(n

0
P)� �E

P

�P(n0
P) + �E

P

= 0, (2)

Z 1

�1
dn0

APmono

(n0
A)
�A(n

0
A)� �E

A

�A(n0
A) + �E

A

= 0, (3)

Z 1

�1
dn0

iPmono

(n0
i)
�i(n

0
i)� �E

i

�i(n0
i) + �E

i

= 0, (4)

�E
D = �E

A

R1
�1 dn0

A

R1
�1 dn0

PPbi

(n0
A, n

0
P) ·

h
�D(n0

A,n
0
P)

(�E
A+�A(n0

A))(�
E
P+�P(n0

P))

i

R1
�1 dn0

A

R1
�1 dn0

PPbi

(n0
A, n

0
P) ·

h
�A(n0

A)

(�E
A+�A(n0

A))(�
E
P+�P(n0

P))

i . (5)

⇢D = � �D

�A�P � �2

D

(6)

Charge current almost conserved, � tends to infinity.
Charge current not conserved,
� is finite.
Heat current not conserved,  is finite.
Heat current conserved,  tends to infinity.
Low density (µ = 0) limit
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•  Our	moDvaDon:	How	well	does	this	standard	theory	agree	with	
																																		graphene	experiment?	
	
•  Using	the	standard	theory	above,	let	us	calculate	ρD	while	varying:		

•  Layer	densiDes,	nA,	nP	
•  Temperature,	T	
•  We	consider	B=0	only	for	this	work.	
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Standard	theory	vs	Experiment	(nA	=	-nP	=	n)	

Theory	
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Figure 4. (color online) Theoretical graphene drag resistivity
compared against experiment. (a) Theoretical drag resistivity
assuming perfectly homogeneous samples. (b) Drag resistivity
from the experiment of Ref. [8]. (c),(d) Theoretical drag
resistivity in the presence of anti-correlated and correlated
puddles respectively. Interlayer spacing d = 9nm throughout.

Several works in the literature have derived the drag re-
sistivity corresponding to Coulomb-mediated momentum
transfer between the layers, known as the momentum
drag resistivity (following the terminology of Ref. [30])
under various approximations [32–36]. All these works
however make the assumption of perfectly homogeneous
layers. Using the momentum drag expressions from Ref.
[36] (see Methods section for details), we calculate the
drag resistivity ⇢D of graphene (encapsulated in hexag-
onal boron nitride (hBN)) in Fig. 4(a) as a function of
equal but oppositely tuned layer densities nA = �nP at
di↵erent temperatures. This contradicts the experimen-
tal data from the Manchester group [8], reproduced in
Fig. 4(b). First, the peaks in drag resistivity occurring
at finite density decrease with temperature according to
homogeneous momentum drag theory while the experi-
ment sees them increase with temperature. Second, there
is a strong positive peak at the double Dirac point (DP)
nA = nP = 0 that is seen only in experiment. Homoge-
neous momentum drag theory thus fails to explain exper-
iment.

In Fig. 4(c), we take inhomogeneities and interlayer
(anti-)correlations into account using drag EMT and re-
produce both of the abovementioned features. We note
that the temperature dependence of drag at the dou-
ble DP is also reproduced qualitatively by our model,
as shown in Supplementary Fig. 2. This calculation
is done by substituting the relevant conductivity ex-
pressions (see Methods section) into Eqs. (1) to (3),
and scaling up the resulting values of ⇢

EMT

D to obtain
⇢̃

EMT

D = 3.6⇢EMT

D . This last step accounts for the en-

hancement caused by dielectric inhomogeneity [38]. The
factor of 3.6 is obtained by dividing the 130K drag resis-
tivity seen in experiment by that predicted by homoge-
neous momentum drag theory in the high density regime
nA = �nP = �6 ⇥ 1011cm�2, as that is where inho-
mogeneities have a negligible e↵ect on drag. The inho-
mogeneity of the layers is modeled by average densities
nA and nP with root mean square density fluctuations
n

A,P
rms

= 6 ⇥ 1010cm�2 and an interlayer correlation coef-
ficient,

⌘ = F (nA, nP, T )⇥(�F (nA, nP, T )), where

F (nA, nP, T ) = [�1 + C(T � T

0
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0

)] e�D

p
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.
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Here ⇥ denotes the stepfunction and we choose C =
0.005K�1, D = 1

2

⇥ 1010cm2 and T

0

= 70K to fit the
experiment. The reordering of peaks (at finite density
away from DP) in temperature occurs as long as su�-
ciently large n

rms

values are used in the calculation and
does not depend on the correlation coe�cient ⌘. The
situation at the double DP on the other hand is sub-
tle and depends crucially on the nature of correlation
between the layers. Various scenarios have been pro-
posed, each leading to a di↵erent type of interlayer corre-
lation. First, local sheet corrugations (known as ripples)
are known to give rise to spatially varying surface poten-
tials which induce charge puddles [26]. It has been ar-
gued [8] that oppositely charged puddles in the layers will
attract one another, leading to anti-correlation (⌘ < 0)
between the puddles of the two layers. Second, charged
impurities concentrated primarily below one of the two
layers have been shown to lead to correlated (⌘ > 0) den-
sity distributions [39], since both layers see similar impu-
rity potentials. Lastly, uncorrelated (⌘ ! 0) puddles
are expected in the limit of large interlayer separation
or when charged impurities are evenly distributed above
and below both layers, so that each layer sees an inde-
pendent impurity potential. The above functional depen-
dence in Eq. (6) is chosen to reflect the first scenario –
Ripple-induced electron-hole puddles lead to perfect anti-
correlation ⌘ = �1 between the layers at the double DP,
with ⌘ decreasing as density and temperature increase
due to stronger screening and thermal carrier excitation
respectively. Thus, anti-correlated momentum drag leads
to a strong positive peak in ⇢D at the double DP, consis-
tent with experiment.

Song and Levitov [30] explain this peak using a dif-
ferent drag mechanism that arises from interlayer en-
ergy exchange [40]. In this mechanism, current flowing
through regions of inhomogeneous charge density in the
active layer generates temperature gradients which are
then transferred to the passive layer due to strong ther-
mal coupling. These gradients then give rise to an elec-
tric field via the Peltier e↵ect. This energy drag mecha-
nism gives a positive (negative) contribution to ⇢D at the

Experiment	
(Geim	et	al,	Nat	Phys	2012)	
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Figure 4. (color online) Theoretical graphene drag resistivity
compared against experiment. (a) Theoretical drag resistivity
assuming perfectly homogeneous samples. (b) Drag resistivity
from the experiment of Ref. [8]. (c),(d) Theoretical drag
resistivity in the presence of anti-correlated and correlated
puddles respectively. Interlayer spacing d = 9nm throughout.

Several works in the literature have derived the drag re-
sistivity corresponding to Coulomb-mediated momentum
transfer between the layers, known as the momentum
drag resistivity (following the terminology of Ref. [30])
under various approximations [32–36]. All these works
however make the assumption of perfectly homogeneous
layers. Using the momentum drag expressions from Ref.
[36] (see Methods section for details), we calculate the
drag resistivity ⇢D of graphene (encapsulated in hexag-
onal boron nitride (hBN)) in Fig. 4(a) as a function of
equal but oppositely tuned layer densities nA = �nP at
di↵erent temperatures. This contradicts the experimen-
tal data from the Manchester group [8], reproduced in
Fig. 4(b). First, the peaks in drag resistivity occurring
at finite density decrease with temperature according to
homogeneous momentum drag theory while the experi-
ment sees them increase with temperature. Second, there
is a strong positive peak at the double Dirac point (DP)
nA = nP = 0 that is seen only in experiment. Homoge-
neous momentum drag theory thus fails to explain exper-
iment.
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ciently large n

rms

values are used in the calculation and
does not depend on the correlation coe�cient ⌘. The
situation at the double DP on the other hand is sub-
tle and depends crucially on the nature of correlation
between the layers. Various scenarios have been pro-
posed, each leading to a di↵erent type of interlayer corre-
lation. First, local sheet corrugations (known as ripples)
are known to give rise to spatially varying surface poten-
tials which induce charge puddles [26]. It has been ar-
gued [8] that oppositely charged puddles in the layers will
attract one another, leading to anti-correlation (⌘ < 0)
between the puddles of the two layers. Second, charged
impurities concentrated primarily below one of the two
layers have been shown to lead to correlated (⌘ > 0) den-
sity distributions [39], since both layers see similar impu-
rity potentials. Lastly, uncorrelated (⌘ ! 0) puddles
are expected in the limit of large interlayer separation
or when charged impurities are evenly distributed above
and below both layers, so that each layer sees an inde-
pendent impurity potential. The above functional depen-
dence in Eq. (6) is chosen to reflect the first scenario –
Ripple-induced electron-hole puddles lead to perfect anti-
correlation ⌘ = �1 between the layers at the double DP,
with ⌘ decreasing as density and temperature increase
due to stronger screening and thermal carrier excitation
respectively. Thus, anti-correlated momentum drag leads
to a strong positive peak in ⇢D at the double DP, consis-
tent with experiment.

Song and Levitov [30] explain this peak using a dif-
ferent drag mechanism that arises from interlayer en-
ergy exchange [40]. In this mechanism, current flowing
through regions of inhomogeneous charge density in the
active layer generates temperature gradients which are
then transferred to the passive layer due to strong ther-
mal coupling. These gradients then give rise to an elec-
tric field via the Peltier e↵ect. This energy drag mecha-
nism gives a positive (negative) contribution to ⇢D at the

	 				Obvious	Discrepancies	
•  T-dependence	of	outer	peaks!	
•  A	central	peak	seen	only	in	experiment	
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with experiment by Gorbachev et al [16] where the op-
posite is seen. We show that upon inclusion of density
inhomogeneity, the drag resistivity peaks increase with
temperature within the range of experiment, thus re-
solving the contradiction. Gorbachev et al also report
measuring anomalously straight drag resistivity isolevels
whereas standard homogeneous theory predicts curved
ones. We demonstrate that these straight isolevels are in
fact caused by the presence of charge density fluctuations.
Lastly, there is an ongoing controversy surrounding the
nature of correlations between the layers’ fluctuations.
As we discuss in detail later, there exist arguments that
they are correlated [30], anti-correlated [16] or simply un-
correlated. We demonstrate using drag EMT that it is
possible to deduce the nature of the correlations by mea-
suring drag resistivity along di↵erent lines in the two-
layer density parameter space.

n
(1

01
0
cm

!
2
)

-30

-20

-10

0

10

20

30

n
(1

01
0
cm

!
2
)

-30

-20

-10

0

10

20

30

J 

d 
J 

V 

Active  
 layer 

Passive 
layer 

n
(1

01
0
cm

!
2
)

-30

-20

-10

0

10

20

30

Figure 1. (color online) Schematic of Coulomb drag between
two inhomogeneous sheets of two-dimensional material.

The plan of this paper is as follows. Sec. II. presents
the derivation of Coulomb drag EMT, of which several
example applications will be given in the next two sec-
tions. Sec. III investigates excitonic drag in the presence
of density fluctuations and Sec. IV studies the impact
of these fluctuations on drag between graphene sheets.
Sec. V concludes with a discussion of this work and the
problems that may be pursued in future based on it.

II. COULOMB DRAG EFFECTIVE MEDIUM
THEORY

We consider the standard drag setup – two parallel 2D
sheets of identical size separated by some finite distance,
with a current flowing through the active layer while the
passive layer remains an open circuit. To model the pres-
ence of inhomogeneity, we assume that the active and
passive layers are each made up of N patches (commonly
referred to as ‘puddles’) each with its own conductivity,
�

A
i

and �

P
i

respectively, where i = 1, · · · , N . We assume
that the puddles in both layers are circles of radius a,

with the ith puddle of the active layer lying exactly atop
the ith puddle of the passive, as in Fig. 2. This assump-
tion is of general applicability because we are allowed to
define as many circular patches and make them as small
as we wish. We do not make any further assumptions
about the nature of these puddles and our derivation is
applicable regardless of whether the puddles are corre-
lated, anti-correlated or uncorrelated, etc.

EEP	=	E0P	+	EsP	
EiP,	σiP	 σEP	

EiA,	σiA	
EEA	=	E0A	+	EsA	

σEA	

Figure 2. (color online) The ith puddles of the active and
passive layers are each embedded inside their own e↵ective
media.

Unlike the standard single layer case (see Appendix
A), there are three e↵ective conductivities to be deter-
mined. These are the e↵ective in-plane conductivities of
the active and passive layers, and the e↵ective drag con-
ductivity between the layers. We denote them by �

A
E ,�

P
E

and �

D
E respectively. Our final result is the set of equa-

tions (see Eqs. (22) and (23)) that are solved to yield the
e↵ective conductivities.
We summarize the steps of our derivation before delv-

ing into the details. First, we take an arbitrary ith pair of
puddles, one from each layer, and embed each one inside
its own homogeneous e↵ective medium of conductivity
�

A
E and �

P
E respectively as shown in Fig. 2, where each

e↵ective medium has within it the uniform e↵ective field
(excluding the field caused by the puddle) denoted by ~

E

P
0

and ~

E

A
0

respectively and the drag conductivity between
the two e↵ective media is denoted �

D
E . Next, we deter-

mine the electric fields inside the puddles, ~EA
i

and ~

E

P
i

. Fi-
nally, we substitute these into the EMT self-consistency
equations, given by

X

i

f

i

~

E

A
i
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E

A
0

, (1)

and
X

i

f

i

~

E

P
i

= ~

E

P
0

(2)

where f
i

refers to the areal fraction of the ith patch rela-
tive to the whole layer to obtain Eqs. (20), (18) and (21).
Taking the continuum limit, we obtain the final results
of Eqs. (22) and (23).
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with experiment by Gorbachev et al [16] where the op-
posite is seen. We show that upon inclusion of density
inhomogeneity, the drag resistivity peaks increase with
temperature within the range of experiment, thus re-
solving the contradiction. Gorbachev et al also report
measuring anomalously straight drag resistivity isolevels
whereas standard homogeneous theory predicts curved
ones. We demonstrate that these straight isolevels are in
fact caused by the presence of charge density fluctuations.
Lastly, there is an ongoing controversy surrounding the
nature of correlations between the layers’ fluctuations.
As we discuss in detail later, there exist arguments that
they are correlated [30], anti-correlated [16] or simply un-
correlated. We demonstrate using drag EMT that it is
possible to deduce the nature of the correlations by mea-
suring drag resistivity along di↵erent lines in the two-
layer density parameter space.
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Figure 1. (color online) Schematic of Coulomb drag between
two inhomogeneous sheets of two-dimensional material.

The plan of this paper is as follows. Sec. II. presents
the derivation of Coulomb drag EMT, of which several
example applications will be given in the next two sec-
tions. Sec. III investigates excitonic drag in the presence
of density fluctuations and Sec. IV studies the impact
of these fluctuations on drag between graphene sheets.
Sec. V concludes with a discussion of this work and the
problems that may be pursued in future based on it.

II. COULOMB DRAG EFFECTIVE MEDIUM
THEORY

We consider the standard drag setup – two parallel 2D
sheets of identical size separated by some finite distance,
with a current flowing through the active layer while the
passive layer remains an open circuit. To model the pres-
ence of inhomogeneity, we assume that the active and
passive layers are each made up of N patches (commonly
referred to as ‘puddles’) each with its own conductivity,
�

A
i

and �

P
i

respectively, where i = 1, · · · , N . We assume
that the puddles in both layers are circles of radius a,

with the ith puddle of the active layer lying exactly atop
the ith puddle of the passive, as in Fig. 2. This assump-
tion is of general applicability because we are allowed to
define as many circular patches and make them as small
as we wish. We do not make any further assumptions
about the nature of these puddles and our derivation is
applicable regardless of whether the puddles are corre-
lated, anti-correlated or uncorrelated, etc.
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Figure 2. (color online) The ith puddles of the active and
passive layers are each embedded inside their own e↵ective
media.

Unlike the standard single layer case (see Appendix
A), there are three e↵ective conductivities to be deter-
mined. These are the e↵ective in-plane conductivities of
the active and passive layers, and the e↵ective drag con-
ductivity between the layers. We denote them by �

A
E ,�

P
E

and �

D
E respectively. Our final result is the set of equa-

tions (see Eqs. (22) and (23)) that are solved to yield the
e↵ective conductivities.
We summarize the steps of our derivation before delv-

ing into the details. First, we take an arbitrary ith pair of
puddles, one from each layer, and embed each one inside
its own homogeneous e↵ective medium of conductivity
�

A
E and �

P
E respectively as shown in Fig. 2, where each

e↵ective medium has within it the uniform e↵ective field
(excluding the field caused by the puddle) denoted by ~

E

P
0

and ~

E

A
0

respectively and the drag conductivity between
the two e↵ective media is denoted �

D
E . Next, we deter-

mine the electric fields inside the puddles, ~EA
i

and ~

E

P
i

. Fi-
nally, we substitute these into the EMT self-consistency
equations, given by
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where f
i

refers to the areal fraction of the ith patch rela-
tive to the whole layer to obtain Eqs. (20), (18) and (21).
Taking the continuum limit, we obtain the final results
of Eqs. (22) and (23).
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What	about	interlayer	correlaDons	between	puddes?	

	



EMT	effecDvely	models	charge	transport	in	graphene	at	the		
neutrality	point	

similar to the linear result for small !. For the experimentally
relevant regime !!1, the hyperbolic result depends only
weakly on ! and is indistinguishable from the parabolic re-
sult for T"0.5T!.

This analysis suggests that #min"T# / "e$c#, which can be
taken directly from experiment, is not a function of $c, but
only nrms. We take results from a set of experiments in very
different regimes "see the inset of Fig. 4# and choose nrms to
fix the value of #min"T# / "nrmse$c# at T=0. Then using
kBT!"nrms#=EF"nrms# to scale the temperature, all of the re-
sults lie on top of the theoretical curve computed using the
hyperbolic dispersion, see Fig. 4. The theoretical curve with

which they agree is distinct from similar curves calculated
for a linear dispersion and for the purely parabolic dispersion
at high T /T!. We note that the scaling function is more com-
plicated than a line. The calculation reproduces not only the
initial slope as a function of temperature but also the cross-
over to higher temperature behavior. For the parabolic dis-
persion, which agrees at low temperatures, the conductivity
extrapolates from #min"T→0# / "nrmse$c#!3−1/2 at low tem-
perature to #min"t%1# / "nrmse$c#!"2 ln 2#t at high tempera-
ture, with a crossover temperature scale of T!T! /2. In the
future, it should be possible to further test this agreement by
measuring nrms experimentally.26–29

One feature of Figs. 2 and 4 is that for most of the ex-
perimentally relevant regime, the temperature dependence of
the conductivity calculated using the parabolic approxima-
tion provides an adequate solution. This limit has been
treated in contemporaneous work41,42 treating this problem
with different approximations and reaching similar conclu-
sions. To better understand the emergence of a universal
scaling form, we consider the conductivity for a parabolic
band dispersion. Using the scaled variables defined above,
we can manipulate Eq. "3# into the dimensionless form

$
0

&

dz exp%− z2/2&cosh%zgz&
H%z,t& − #̄%zg,t&
H%z,t& + #̄%zg,t&

= 0, "4#

where zg=ng /nrms and we have written the local conductivity
as #"n ,T#=nrmse$cH"z , t#. Below we calculate the dimen-
sionless function H"z , t# assuming thermally activated carrier
transport with constant nrms and $c and explicitly show that it
depends only on scaled variables z=n /nrms and t=T /T!. With
the analytical results for H"z , t# discussed below, this implicit
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FIG. 2. "Color online# Conductivity vs gate voltage for clean
and dirty graphene bilayers calculated from Eq. "3#. Solid curves
use the hyperbolic dispersion relation while dashed lines "only dis-
tinguishable at high temperature# show the parabolic approxima-
tion. Choice of parameters were based on experiments of Ref. 15
"clean# and Ref. 38 "dirty#. Left panel: $c=6750 cm2 /V s, nrms
=4'1011 cm−2, and "from bottom to top# T=20, 100, 180, and 260
K. Right panel: $c=1100 cm2 /V s, nrms=1.25'1012 cm−2, and
"from bottom to top# T=12, 105, 171, and 290 K.
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FIG. 4. "Color online# Same results as in Fig. 3 showing com-
parison with experimental data from several groups. Inset shows the
unscaled experimental data while the main panel shows that the
data collapses onto the theoretical curve with one scaling parameter
"nrms#, where for each of these samples, we also use the value of
mobility reported by the authors and obtained from a separate low-
temperature measurement. Green triangles show suspended bilayer
data from Ref. 40 using $c=1.4 m2 /V s and T!=36 K. Orange
squares "Ref. 38# and diamonds "Ref. 16# are bilayers on a SiO2
substrate with $c=0.11 m2 /V s, T!=530 K, and $c
=0.045 m2 /V s and T!=290 K. Cyan circles show the four data
points of Ref. 15, with $c=0.675 m2 /V s, T!=80 K, which are
off-scale in the main panel.
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EMT	applied	to	graphene	conducDvity	
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Figure 3 Spatial density fluctuations and electron/hole puddles. a, Colour map
of the spatial density variations in the graphene flake extracted from surface
potential measurements at high density and when the average carrier density is
zero. The blue regions correspond to holes and the red regions to electrons. The
black contour marks the zero density contour. b, Histogram of the density
distribution in a.

similar to the distance used when imaging the compressibility of
the graphene layer. This result suggests that density fluctuations in
graphene do not primarily originate from trapped oxide charge.
Studies of the nanoscale morphology of silicon oxide and graphene
using non-contact atomic force microscopy have revealed that the
graphene flake partially conforms to substrate corrugations and
that without further treatment acrylic resists used in the fabrication
may leave a residue on the graphene flake36. Both substrate-induced
structural distortions as well as chemical doping from resist residue
are conceivable sources of density fluctuations. Even though our
sample was not exposed to an acrylic resist, we cannot exclude
that photoresist too leaves a residue despite ozone and ammonia
treatment. In addition, atmospheric species trapped in between the
flake and substrate as well as chemical adsorbants on top of the flake
may represent an important source of disorder, even though the
large shift of the neutrality point on annealing in vacuum indicates
that these chemical absorbates can to a large extent be removed.
STM studies on epitaxial graphene grown on SiC suggested in-
plane defects as an important source of disorder37. It is beyond
the scope of this work to identify the precise origin of disorder.
Instead, this work intends to unveil the typical characteristics of
density fluctuations present in graphene flakes obtained through
mechanical exfoliation procedures and with similar quality to
the ones used in previously reported transport and spectroscopy
studies of graphene.

The fluctuations in density discussed thus far have been
resolution limited by our technique. However, the intrinsic density
fluctuations may be extracted by going into the quantum Hall
regime (intrinsic here is used synonymously with not resolution
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Figure 4 Potential variations on the substrate. a, Colour map of the spatial
fluctuations in the surface potential measured above a patch of the bare silicon
oxide surface near the graphene flake. b, Histogram of the potential fluctuation
distribution in a. The variance is approximately equal to 50mV.

smeared). A large magnetic field applied perpendicular to the
sample produces bands of localized and extended states that are
manifested in universal transport properties45. Our previous studies
on GaAs 2D electron systems have shown that at suYciently large
magnetic fields, the width in density of the band of localized
states, also referred to as the incompressible band, becomes field
and also filling factor independent. This width constitutes a direct
measure of the density fluctuations in the sample46. Figure 5 shows
a colour rendering of the @µ/@n measured on our graphene
flake as a function of the magnetic field and density. A single
density scan at the fixed field of 11 T is shown in Fig. 5b. It is
composed of a series of maxima at the integer fillings 2,6,10
and so on, corresponding to regions of low compressibility. These
maxima can be fitted well by gaussians of identical variance,
which is in accordance with the filling-independent width of the
incompressible bands observed in conventional 2D systems. The
variance may serve as a measure for the disorder amplitude. A
best fit to the data is obtained assuming density fluctuations of
approximately 1n2D,B=11 T = ±2.3 ⇥ 1011 cm�2. A similar analysis
at lower magnetic fields shows that the variance still drops slightly
with decreasing magnetic field and hence the value 1n2D,B=11 T is a
lower bound for the disorder strength as bands of localized states
are not well separated yet. The disorder amplitude extracted from
these measurements in the presence of a magnetic field is about a
factor of six larger than the disorder estimate 1n2D,B=0 T from the
B = 0 T measurement in Fig. 3. This diVerence allows us to deduce
the intrinsic disorder length scale, ldisorder. For the zero field estimate,
the density fluctuations are averaged over an area determined by the
tip size with a characteristic dimension of approximately 150 nm
(see Fig. 2b). The ratio of these averaged density fluctuations and
the intrinsic ones is simply the square root of the ratio of the
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Puddles	in	monolayer	graphene		
(J	MarDn,	Nat	Phys	2008).	

SoluDon:	EffecDve	Medium	Theory	(EMT)	



We	derive	an	effecDve	medium	theory	
for	the	Coulomb	drag	problem.	



	
1.		Take	a	pair	of	patches.	Embed	them	into	a	pair	of	effecDve	media.	
		
	

Brief	Deriva?on	of	Drag	EMT	
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removing material  from an inhomogeneous medium, and at times will be removing the 
last conducting link in a path. 

Let  us turn aside for a second to consider resistor networks to which we return later 
in more detail. Fig. 3 taken from Leath  79 shows a two-dimensional  resistor network 
from which sites to which the resistors connect  have been removed at random. It is 
clear tha t  the removal of a site can have a very variable effect, depending on its environ-  
ment. A site taken out of a region of occupied surrounding sites has a modest  effect. 
Removing a site which is already disconnected has no effect at all. Removing a site 
which opens up a continuous link has a strong effect. Clearly the considerations leading 
to Eq. (5.5) do not do justice to this sort of variability. Fig. 3, while specifically drawn 
for resistor networks,  has an obvious implication for inhomogeneous continuous media. 
Note  tha t  Eq. (5.5) differs from the CM approximation because Eq. (5.5) allows for 
overlapping spherical regions. It is thus, in a rough sense, more realistic as a conse- 
quence of the greater variety of shapes for the inclusions. 
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Fig. 3. Randomly generated cluster 
of 193 occupied, connected sites 
(.), surrounded by 169 vacant, 
boundary sites (o). 

Fig. 4. The shaded crystal of type 1 is sur- 
rounded by crystals of both types, which are 
imagined to be replaced by a single medium 
of uniform conductivity. 

6. B R U G G E M A N ' S  SYMMETRICAL E F F E C T I V E  MEDIUM T H E O R Y  

Fig. 4 illustrates a two component  medium. Let  us consider the cross-hatched 
volume, take it as spherical, and assume it is embedded in a uniform medium with an 
effective conductivity o m. If the field far from the inclusion is E 0 then elementary 
considerat ions lead to a dipole moment  associated with the volume under  considerat ion 

3 Ol-O m 
p =-- V Eo, (6.1) 

41r Ol+2O m 

where V is the volume of the region. This polarization produces a deviation from E 0. 
The space integral of the deviation, as discussed previously, is -4~rp. Thus if the 
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Fig. 3. Randomly generated cluster 
of 193 occupied, connected sites 
(.), surrounded by 169 vacant, 
boundary sites (o). 

Fig. 4. The shaded crystal of type 1 is sur- 
rounded by crystals of both types, which are 
imagined to be replaced by a single medium 
of uniform conductivity. 

6. B R U G G E M A N ' S  SYMMETRICAL E F F E C T I V E  MEDIUM T H E O R Y  

Fig. 4 illustrates a two component  medium. Let  us consider the cross-hatched 
volume, take it as spherical, and assume it is embedded in a uniform medium with an 
effective conductivity o m. If the field far from the inclusion is E 0 then elementary 
considerat ions lead to a dipole moment  associated with the volume under  considerat ion 

3 Ol-O m 
p =-- V Eo, (6.1) 

41r Ol+2O m 

where V is the volume of the region. This polarization produces a deviation from E 0. 
The space integral of the deviation, as discussed previously, is -4~rp. Thus if the 
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Ref. [32] which considered drag between inhomogeneous
layers each consisting of only two areal components. Gen-

eralizing Eq. (20) to the continuum limit, we obtain the
EMT drag conductivity equation
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Equation (22) is the main result of this work and repre-

sents the first generalization of EMT to the drag problem.
We emphasize that it is general and applies to drag be-
tween any two sheets of two-dimensional material. The
drag resistivity is given by solving Eqs. (22) and (23) for
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The standard homogeneous theory [8, 9, 33] is recovered
in the limit of nA,P
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! 0.

To perform actual calculations, one must choose spe-
cific probability distributions for P
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distribution,
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where n

i

without the prime superscript denotes the av-
erage charge density of layer i set by the external gate
voltage. ni

rms

is the root mean square density fluctuation
about the average caused by charged impurities or corru-
gations and quantifies the strength of inhomogeneity in
the sample.

We model the double layer distribution using the bi-
variate normal probability distribution [34]
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where the interlayer correlation coe�cient ⌘ quantifies
the charge density fluctuations between the two layers.
A value of ⌘ = 1 (�1) corresponds to perfectly corre-
lated (anti-correlated) charge density fluctuations within
the two layers, while a value of ⌘ = 0 corresponds to
uncorrelated fluctuations. Mathematically, ⌘ is defined
by

⌘ ⌘ h(n0
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n
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, (27)

where the angular brackets refer to averaging over the
areas of the two layers. Static charged impurities in the

surroundings of two sheets held close together can lead to
correlated fluctuations [31], whereas random strain in the
sheets together with strong Coulomb coupling between
them can lead to anti-correlated fluctuations [16]. If the
separation between layers is fairly large, the fluctuations
will tend to be uncorrelated due to each sheet seeing a
potential of di↵erent origin. All these scenarios may be
modeled in Eq. (27) by choosing the value of ⌘ accord-
ingly. In an earlier version of this work, we claimed that
Onsager reciprocity relation is violated for ⌘ 6= 0 but this
has since been found to be due to a numerical error. We
show in Appendix B a proof that Onsager reciprocity is
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Ĵ(Q) = Ĵ(E) (8)

e =
HvF lel�min

T�
(9)

� = �min +
vF lele

2n2

H
(10)

L =
e

�T
(11)

L =
⇡2

3

✓
kB
e

◆
2

⌘ L
0

(12)

1

Z 1

�1
dn0

PPmono

(n0
P)
�P(n

0
P)� �E

P

�P(n0
P) + �E

P

= 0, (1)

Z 1

�1
dn0

APmono

(n0
A)
�A(n

0
A)� �E

A

�A(n0
A) + �E

A

= 0, (2)

Z 1

�1
dn0

iPmono

(n0
i)
�i(n

0
i)� �E

i

�i(n0
i) + �E

i

= 0, (3)

�E
D = �E

A

R1
�1 dn0

A

R1
�1 dn0

PPbi

(n0
A, n

0
P) ·

h
�D(n0

A,n
0
P)

(�E
A+�A(n0

A))(�
E
P+�P(n0

P))

i

R1
�1 dn0

A

R1
�1 dn0

PPbi

(n0
A, n

0
P) ·

h
�A(n0

A)

(�E
A+�A(n0

A))(�
E
P+�P(n0

P))

i . (4)

⇢D = � �D

�A�P � �2

D

(5)

Charge current almost conserved, � tends to infinity.
Charge current not conserved,
� is finite.
Heat current not conserved,  is finite.
Heat current conserved,  tends to infinity.
Low density (µ = 0) limit

Ĵ(N) = vF
X

i

ph
i

|ph
i |

� vF
X

i

pe
i

|pe
i |

(6)

High density (µ � kBT ) limit
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Ĵ(Q) = Ĵ(E) (8)
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Given	a	pair	of	2D	layers	with		
non-uniform	distribuDon	of	conducDviDes.	

Obtain	the	effecDve	drag	resisDvity	
that	is	measured	in	experiment.	

2

with experiment by Gorbachev et al [16] where the op-
posite is seen. We show that upon inclusion of density
inhomogeneity, the drag resistivity peaks increase with
temperature within the range of experiment, thus re-
solving the contradiction. Gorbachev et al also report
measuring anomalously straight drag resistivity isolevels
whereas standard homogeneous theory predicts curved
ones. We demonstrate that these straight isolevels are in
fact caused by the presence of charge density fluctuations.
Lastly, there is an ongoing controversy surrounding the
nature of correlations between the layers’ fluctuations.
As we discuss in detail later, there exist arguments that
they are correlated [30], anti-correlated [16] or simply un-
correlated. We demonstrate using drag EMT that it is
possible to deduce the nature of the correlations by mea-
suring drag resistivity along di↵erent lines in the two-
layer density parameter space.
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Figure 1. (color online) Schematic of Coulomb drag between
two inhomogeneous sheets of two-dimensional material.

The plan of this paper is as follows. Sec. II. presents
the derivation of Coulomb drag EMT, of which several
example applications will be given in the next two sec-
tions. Sec. III investigates excitonic drag in the presence
of density fluctuations and Sec. IV studies the impact
of these fluctuations on drag between graphene sheets.
Sec. V concludes with a discussion of this work and the
problems that may be pursued in future based on it.

II. COULOMB DRAG EFFECTIVE MEDIUM
THEORY

We consider the standard drag setup – two parallel 2D
sheets of identical size separated by some finite distance,
with a current flowing through the active layer while the
passive layer remains an open circuit. To model the pres-
ence of inhomogeneity, we assume that the active and
passive layers are each made up of N patches (commonly
referred to as ‘puddles’) each with its own conductivity,
�

A
i

and �

P
i

respectively, where i = 1, · · · , N . We assume
that the puddles in both layers are circles of radius a,

with the ith puddle of the active layer lying exactly atop
the ith puddle of the passive, as in Fig. 2. This assump-
tion is of general applicability because we are allowed to
define as many circular patches and make them as small
as we wish. We do not make any further assumptions
about the nature of these puddles and our derivation is
applicable regardless of whether the puddles are corre-
lated, anti-correlated or uncorrelated, etc.

EEP	=	E0P	+	EsP	
EiP,	σiP	 σEP	

EiA,	σiA	
EEA	=	E0A	+	EsA	

σEA	

Figure 2. (color online) The ith puddles of the active and
passive layers are each embedded inside their own e↵ective
media.

Unlike the standard single layer case (see Appendix
A), there are three e↵ective conductivities to be deter-
mined. These are the e↵ective in-plane conductivities of
the active and passive layers, and the e↵ective drag con-
ductivity between the layers. We denote them by �

A
E ,�

P
E

and �

D
E respectively. Our final result is the set of equa-

tions (see Eqs. (22) and (23)) that are solved to yield the
e↵ective conductivities.
We summarize the steps of our derivation before delv-

ing into the details. First, we take an arbitrary ith pair of
puddles, one from each layer, and embed each one inside
its own homogeneous e↵ective medium of conductivity
�

A
E and �

P
E respectively as shown in Fig. 2, where each

e↵ective medium has within it the uniform e↵ective field
(excluding the field caused by the puddle) denoted by ~

E

P
0

and ~

E

A
0

respectively and the drag conductivity between
the two e↵ective media is denoted �

D
E . Next, we deter-

mine the electric fields inside the puddles, ~EA
i

and ~

E

P
i

. Fi-
nally, we substitute these into the EMT self-consistency
equations, given by

X

i

f

i

~

E

A
i

= ~

E

A
0

, (1)

and
X

i

f

i

~

E

P
i

= ~

E

P
0

(2)

where f
i

refers to the areal fraction of the ith patch rela-
tive to the whole layer to obtain Eqs. (20), (18) and (21).
Taking the continuum limit, we obtain the final results
of Eqs. (22) and (23).

Solve	the	three	EMT	equaDons	for	effecDve	conducDviDes.	

Works	for	any		
2D	material!	

arXiv:1611.03089v2	

Inputs:	
1.  ConducDviDes	as	
							funcDon	of	density			
2.  Density	distribuDons		
							of	the	two	layers.	
	
Note	that	fluctuaDons	
in	the	layers	may	be		
correlated.	
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Charge current almost conserved, � tends to infinity.
Charge current not conserved,
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5

Ref. [32] which considered drag between inhomogeneous
layers each consisting of only two areal components. Gen-

eralizing Eq. (20) to the continuum limit, we obtain the
EMT drag conductivity equation
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where n0
A and n

0
P denote the charge densities in the active

and passive layers and �

E
D is the e↵ective medium theory

averaged drag conductivity obtained by solving the equa-
tion. P

bi

(n0
A, n

0
P) is the joint probability distribution of

finding two points on the layers with one point lying di-
rectly above the other having charge densities (n0

A, n
0
P).

Doing the same for Eqs. (18) and (21) yields

Z 1

�1
dn

0
i

P

mono

(n0
i

)
�

i

(n0
i

)� �

E
i

�

i

(n0
i

) + �

E
i

= 0, (23)

where i = A,P henceforth denotes the layer index (in-
stead of the areal fraction) and �

i

(n0
i

) is the homogeneous
conductivity of layer i at uniform density n

0
i

. P

mono

(n0
i

)
is the single layer probability density of finding a point
on layer i with charge density n

0
i

.
Equation (22) is the main result of this work and repre-

sents the first generalization of EMT to the drag problem.
We emphasize that it is general and applies to drag be-
tween any two sheets of two-dimensional material. The
drag resistivity is given by solving Eqs. (22) and (23) for
the three conductivities �

E
D, �

E
A, �

E
P and inserting them

into

⇢

E
D = � �

E
D

�

E
A�

E
P � (�E

D)
2

. (24)

The standard homogeneous theory [8, 9, 33] is recovered
in the limit of nA,P

rms

! 0.

To perform actual calculations, one must choose spe-
cific probability distributions for P

mono

and P

bi

. We
choose for the former the usual monovariate Gaussian
distribution,
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◆
,

where n

i

without the prime superscript denotes the av-
erage charge density of layer i set by the external gate
voltage. ni

rms

is the root mean square density fluctuation
about the average caused by charged impurities or corru-
gations and quantifies the strength of inhomogeneity in
the sample.

We model the double layer distribution using the bi-
variate normal probability distribution [34]
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where the interlayer correlation coe�cient ⌘ quantifies
the charge density fluctuations between the two layers.
A value of ⌘ = 1 (�1) corresponds to perfectly corre-
lated (anti-correlated) charge density fluctuations within
the two layers, while a value of ⌘ = 0 corresponds to
uncorrelated fluctuations. Mathematically, ⌘ is defined
by

⌘ ⌘ h(n0
A � nA)(n0

P � nP)i
n

A
rms

n

P
rms

, (27)

where the angular brackets refer to averaging over the
areas of the two layers. Static charged impurities in the

surroundings of two sheets held close together can lead to
correlated fluctuations [31], whereas random strain in the
sheets together with strong Coulomb coupling between
them can lead to anti-correlated fluctuations [16]. If the
separation between layers is fairly large, the fluctuations
will tend to be uncorrelated due to each sheet seeing a
potential of di↵erent origin. All these scenarios may be
modeled in Eq. (27) by choosing the value of ⌘ accord-
ingly. In an earlier version of this work, we claimed that
Onsager reciprocity relation is violated for ⌘ 6= 0 but this
has since been found to be due to a numerical error. We
show in Appendix B a proof that Onsager reciprocity is

Quick	Recap	



What	do	we	get	if	we	apply	the	formalism	
to	drag	in	graphene?	



EffecDve	Medium	theory	vs	Experiment	(nA	=	-nP	=	n)	

EffecDve	Medium		
Theory	
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Figure 4. (color online) Theoretical graphene drag resistivity
compared against experiment. (a) Theoretical drag resistivity
assuming perfectly homogeneous samples. (b) Drag resistivity
from the experiment of Ref. [8]. (c),(d) Theoretical drag
resistivity in the presence of anti-correlated and correlated
puddles respectively. Interlayer spacing d = 9nm throughout.

Several works in the literature have derived the drag re-
sistivity corresponding to Coulomb-mediated momentum
transfer between the layers, known as the momentum
drag resistivity (following the terminology of Ref. [30])
under various approximations [32–36]. All these works
however make the assumption of perfectly homogeneous
layers. Using the momentum drag expressions from Ref.
[36] (see Methods section for details), we calculate the
drag resistivity ⇢D of graphene (encapsulated in hexag-
onal boron nitride (hBN)) in Fig. 4(a) as a function of
equal but oppositely tuned layer densities nA = �nP at
di↵erent temperatures. This contradicts the experimen-
tal data from the Manchester group [8], reproduced in
Fig. 4(b). First, the peaks in drag resistivity occurring
at finite density decrease with temperature according to
homogeneous momentum drag theory while the experi-
ment sees them increase with temperature. Second, there
is a strong positive peak at the double Dirac point (DP)
nA = nP = 0 that is seen only in experiment. Homoge-
neous momentum drag theory thus fails to explain exper-
iment.

In Fig. 4(c), we take inhomogeneities and interlayer
(anti-)correlations into account using drag EMT and re-
produce both of the abovementioned features. We note
that the temperature dependence of drag at the dou-
ble DP is also reproduced qualitatively by our model,
as shown in Supplementary Fig. 2. This calculation
is done by substituting the relevant conductivity ex-
pressions (see Methods section) into Eqs. (1) to (3),
and scaling up the resulting values of ⇢

EMT

D to obtain
⇢̃

EMT

D = 3.6⇢EMT

D . This last step accounts for the en-

hancement caused by dielectric inhomogeneity [38]. The
factor of 3.6 is obtained by dividing the 130K drag resis-
tivity seen in experiment by that predicted by homoge-
neous momentum drag theory in the high density regime
nA = �nP = �6 ⇥ 1011cm�2, as that is where inho-
mogeneities have a negligible e↵ect on drag. The inho-
mogeneity of the layers is modeled by average densities
nA and nP with root mean square density fluctuations
n

A,P
rms

= 6 ⇥ 1010cm�2 and an interlayer correlation coef-
ficient,

⌘ = F (nA, nP, T )⇥(�F (nA, nP, T )), where

F (nA, nP, T ) = [�1 + C(T � T

0

)⇥(T � T

0

)] e�D

p
|nAnP|

.

(6)

Here ⇥ denotes the stepfunction and we choose C =
0.005K�1, D = 1

2

⇥ 1010cm2 and T

0

= 70K to fit the
experiment. The reordering of peaks (at finite density
away from DP) in temperature occurs as long as su�-
ciently large n

rms

values are used in the calculation and
does not depend on the correlation coe�cient ⌘. The
situation at the double DP on the other hand is sub-
tle and depends crucially on the nature of correlation
between the layers. Various scenarios have been pro-
posed, each leading to a di↵erent type of interlayer corre-
lation. First, local sheet corrugations (known as ripples)
are known to give rise to spatially varying surface poten-
tials which induce charge puddles [26]. It has been ar-
gued [8] that oppositely charged puddles in the layers will
attract one another, leading to anti-correlation (⌘ < 0)
between the puddles of the two layers. Second, charged
impurities concentrated primarily below one of the two
layers have been shown to lead to correlated (⌘ > 0) den-
sity distributions [39], since both layers see similar impu-
rity potentials. Lastly, uncorrelated (⌘ ! 0) puddles
are expected in the limit of large interlayer separation
or when charged impurities are evenly distributed above
and below both layers, so that each layer sees an inde-
pendent impurity potential. The above functional depen-
dence in Eq. (6) is chosen to reflect the first scenario –
Ripple-induced electron-hole puddles lead to perfect anti-
correlation ⌘ = �1 between the layers at the double DP,
with ⌘ decreasing as density and temperature increase
due to stronger screening and thermal carrier excitation
respectively. Thus, anti-correlated momentum drag leads
to a strong positive peak in ⇢D at the double DP, consis-
tent with experiment.

Song and Levitov [30] explain this peak using a dif-
ferent drag mechanism that arises from interlayer en-
ergy exchange [40]. In this mechanism, current flowing
through regions of inhomogeneous charge density in the
active layer generates temperature gradients which are
then transferred to the passive layer due to strong ther-
mal coupling. These gradients then give rise to an elec-
tric field via the Peltier e↵ect. This energy drag mecha-
nism gives a positive (negative) contribution to ⇢D at the

	 	Effects	of	inhomogeneity/puddles	
•  Outer	peaks	increase	with	T	
•  Central	peak	is	seen	due	to	anD-correlated	puddles.	
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Figure 4. (color online) Theoretical graphene drag resistivity
compared against experiment. (a) Theoretical drag resistivity
assuming perfectly homogeneous samples. (b) Drag resistivity
from the experiment of Ref. [8]. (c),(d) Theoretical drag
resistivity in the presence of anti-correlated and correlated
puddles respectively. Interlayer spacing d = 9nm throughout.

Several works in the literature have derived the drag re-
sistivity corresponding to Coulomb-mediated momentum
transfer between the layers, known as the momentum
drag resistivity (following the terminology of Ref. [30])
under various approximations [32–36]. All these works
however make the assumption of perfectly homogeneous
layers. Using the momentum drag expressions from Ref.
[36] (see Methods section for details), we calculate the
drag resistivity ⇢D of graphene (encapsulated in hexag-
onal boron nitride (hBN)) in Fig. 4(a) as a function of
equal but oppositely tuned layer densities nA = �nP at
di↵erent temperatures. This contradicts the experimen-
tal data from the Manchester group [8], reproduced in
Fig. 4(b). First, the peaks in drag resistivity occurring
at finite density decrease with temperature according to
homogeneous momentum drag theory while the experi-
ment sees them increase with temperature. Second, there
is a strong positive peak at the double Dirac point (DP)
nA = nP = 0 that is seen only in experiment. Homoge-
neous momentum drag theory thus fails to explain exper-
iment.

In Fig. 4(c), we take inhomogeneities and interlayer
(anti-)correlations into account using drag EMT and re-
produce both of the abovementioned features. We note
that the temperature dependence of drag at the dou-
ble DP is also reproduced qualitatively by our model,
as shown in Supplementary Fig. 2. This calculation
is done by substituting the relevant conductivity ex-
pressions (see Methods section) into Eqs. (1) to (3),
and scaling up the resulting values of ⇢

EMT

D to obtain
⇢̃

EMT

D = 3.6⇢EMT

D . This last step accounts for the en-

hancement caused by dielectric inhomogeneity [38]. The
factor of 3.6 is obtained by dividing the 130K drag resis-
tivity seen in experiment by that predicted by homoge-
neous momentum drag theory in the high density regime
nA = �nP = �6 ⇥ 1011cm�2, as that is where inho-
mogeneities have a negligible e↵ect on drag. The inho-
mogeneity of the layers is modeled by average densities
nA and nP with root mean square density fluctuations
n

A,P
rms

= 6 ⇥ 1010cm�2 and an interlayer correlation coef-
ficient,

⌘ = F (nA, nP, T )⇥(�F (nA, nP, T )), where
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Here ⇥ denotes the stepfunction and we choose C =
0.005K�1, D = 1

2

⇥ 1010cm2 and T

0

= 70K to fit the
experiment. The reordering of peaks (at finite density
away from DP) in temperature occurs as long as su�-
ciently large n

rms

values are used in the calculation and
does not depend on the correlation coe�cient ⌘. The
situation at the double DP on the other hand is sub-
tle and depends crucially on the nature of correlation
between the layers. Various scenarios have been pro-
posed, each leading to a di↵erent type of interlayer corre-
lation. First, local sheet corrugations (known as ripples)
are known to give rise to spatially varying surface poten-
tials which induce charge puddles [26]. It has been ar-
gued [8] that oppositely charged puddles in the layers will
attract one another, leading to anti-correlation (⌘ < 0)
between the puddles of the two layers. Second, charged
impurities concentrated primarily below one of the two
layers have been shown to lead to correlated (⌘ > 0) den-
sity distributions [39], since both layers see similar impu-
rity potentials. Lastly, uncorrelated (⌘ ! 0) puddles
are expected in the limit of large interlayer separation
or when charged impurities are evenly distributed above
and below both layers, so that each layer sees an inde-
pendent impurity potential. The above functional depen-
dence in Eq. (6) is chosen to reflect the first scenario –
Ripple-induced electron-hole puddles lead to perfect anti-
correlation ⌘ = �1 between the layers at the double DP,
with ⌘ decreasing as density and temperature increase
due to stronger screening and thermal carrier excitation
respectively. Thus, anti-correlated momentum drag leads
to a strong positive peak in ⇢D at the double DP, consis-
tent with experiment.

Song and Levitov [30] explain this peak using a dif-
ferent drag mechanism that arises from interlayer en-
ergy exchange [40]. In this mechanism, current flowing
through regions of inhomogeneous charge density in the
active layer generates temperature gradients which are
then transferred to the passive layer due to strong ther-
mal coupling. These gradients then give rise to an elec-
tric field via the Peltier e↵ect. This energy drag mecha-
nism gives a positive (negative) contribution to ⇢D at the

Experiment	
(Geim	et	al,	Nat	Phys	2012)	



What	if	the	layers	are	correlated	due	to	impuriDes?	

A	strong	negaDve	peak	is	seen	at	the	double	Dirac	point...	
	
But	this	contradicts	with	the	energy	drag	theory	(Song		
&	Levitov,	PRL	2012).	
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Figure 4. (color online) Theoretical graphene drag resistivity
compared against experiment. (a) Theoretical drag resistivity
assuming perfectly homogeneous samples. (b) Drag resistivity
from the experiment of Ref. [8]. (c),(d) Theoretical drag
resistivity in the presence of anti-correlated and correlated
puddles respectively. Interlayer spacing d = 9nm throughout.

Several works in the literature have derived the drag re-
sistivity corresponding to Coulomb-mediated momentum
transfer between the layers, known as the momentum
drag resistivity (following the terminology of Ref. [30])
under various approximations [32–36]. All these works
however make the assumption of perfectly homogeneous
layers. Using the momentum drag expressions from Ref.
[36] (see Methods section for details), we calculate the
drag resistivity ⇢D of graphene (encapsulated in hexag-
onal boron nitride (hBN)) in Fig. 4(a) as a function of
equal but oppositely tuned layer densities nA = �nP at
di↵erent temperatures. This contradicts the experimen-
tal data from the Manchester group [8], reproduced in
Fig. 4(b). First, the peaks in drag resistivity occurring
at finite density decrease with temperature according to
homogeneous momentum drag theory while the experi-
ment sees them increase with temperature. Second, there
is a strong positive peak at the double Dirac point (DP)
nA = nP = 0 that is seen only in experiment. Homoge-
neous momentum drag theory thus fails to explain exper-
iment.

In Fig. 4(c), we take inhomogeneities and interlayer
(anti-)correlations into account using drag EMT and re-
produce both of the abovementioned features. We note
that the temperature dependence of drag at the dou-
ble DP is also reproduced qualitatively by our model,
as shown in Supplementary Fig. 2. This calculation
is done by substituting the relevant conductivity ex-
pressions (see Methods section) into Eqs. (1) to (3),
and scaling up the resulting values of ⇢

EMT

D to obtain
⇢̃

EMT

D = 3.6⇢EMT

D . This last step accounts for the en-

hancement caused by dielectric inhomogeneity [38]. The
factor of 3.6 is obtained by dividing the 130K drag resis-
tivity seen in experiment by that predicted by homoge-
neous momentum drag theory in the high density regime
nA = �nP = �6 ⇥ 1011cm�2, as that is where inho-
mogeneities have a negligible e↵ect on drag. The inho-
mogeneity of the layers is modeled by average densities
nA and nP with root mean square density fluctuations
n

A,P
rms

= 6 ⇥ 1010cm�2 and an interlayer correlation coef-
ficient,

⌘ = F (nA, nP, T )⇥(�F (nA, nP, T )), where

F (nA, nP, T ) = [�1 + C(T � T

0

)⇥(T � T

0

)] e�D

p
|nAnP|

.

(6)

Here ⇥ denotes the stepfunction and we choose C =
0.005K�1, D = 1

2

⇥ 1010cm2 and T

0

= 70K to fit the
experiment. The reordering of peaks (at finite density
away from DP) in temperature occurs as long as su�-
ciently large n

rms

values are used in the calculation and
does not depend on the correlation coe�cient ⌘. The
situation at the double DP on the other hand is sub-
tle and depends crucially on the nature of correlation
between the layers. Various scenarios have been pro-
posed, each leading to a di↵erent type of interlayer corre-
lation. First, local sheet corrugations (known as ripples)
are known to give rise to spatially varying surface poten-
tials which induce charge puddles [26]. It has been ar-
gued [8] that oppositely charged puddles in the layers will
attract one another, leading to anti-correlation (⌘ < 0)
between the puddles of the two layers. Second, charged
impurities concentrated primarily below one of the two
layers have been shown to lead to correlated (⌘ > 0) den-
sity distributions [39], since both layers see similar impu-
rity potentials. Lastly, uncorrelated (⌘ ! 0) puddles
are expected in the limit of large interlayer separation
or when charged impurities are evenly distributed above
and below both layers, so that each layer sees an inde-
pendent impurity potential. The above functional depen-
dence in Eq. (6) is chosen to reflect the first scenario –
Ripple-induced electron-hole puddles lead to perfect anti-
correlation ⌘ = �1 between the layers at the double DP,
with ⌘ decreasing as density and temperature increase
due to stronger screening and thermal carrier excitation
respectively. Thus, anti-correlated momentum drag leads
to a strong positive peak in ⇢D at the double DP, consis-
tent with experiment.

Song and Levitov [30] explain this peak using a dif-
ferent drag mechanism that arises from interlayer en-
ergy exchange [40]. In this mechanism, current flowing
through regions of inhomogeneous charge density in the
active layer generates temperature gradients which are
then transferred to the passive layer due to strong ther-
mal coupling. These gradients then give rise to an elec-
tric field via the Peltier e↵ect. This energy drag mecha-
nism gives a positive (negative) contribution to ⇢D at the

We begin by studying the energy transfer between the
electronic systems in the two layers [Fig. 1(a)]. This is
described by the Hamiltonian

H ¼
X

i

Z
d2rc y

i ðrÞ½%i@v! &rþ!"iðrÞ(c iðrÞþH el%el;

(6)

where i ¼ 1 . . . 2N index the layer, and spin and valley
degrees of freedom, !"ðrÞ describes the slowly varying
disorder potential, and v is the Fermi velocity. The
electron-electron interactions are described by H el%el ¼
1
2

P
q;k;k0;i;jVijðqÞc y

kþq;ic
y
k0%q;jc k0;jc k;i.

In our analysis, we ignore the correction due to the finite
layer separation d, approximating the interlayer inter-
action by the bare Coulomb interaction, VijðqÞ ) V0

q ¼
2#e2="jqj with " the background dielectric constant.
This approximation is valid when the length scale d is
small compared to the screening length and Fermi wave-
length in the layers, which is the case for systems of
interest [1]. The random-phase approximation then yields
a screened interaction VijðqÞ ¼ V0

q=½1% V0
qð!1ðq; !Þ þ

!2ðq; !ÞÞ( for i, j in the different layers.
We describe the energy distribution of carriers in each

layer by a Fermi distribution at temperatures T1;2. Using
Fermi’s Golden Rule we can calculate the rate of energy
exchange between the two layers (see the Supplemental

Material [18]). In the degenerate limit "1, "2 * kBT, we
obtain the energy transfer rate between layers 1 and 2:

J 12 ¼
6$ð4Þ@3#2v2

%1%2k
4
B

ð%1 þ %2Þ2
!
T4
1 ln

T0

T1
% T4

2 ln
T0

T2

"
; (7)

where %ð"Þ is the total density of states in each layer, and
kBT0 ¼ vð2#e2="Þð%1 þ %2Þ. Notably, for equal densities
J12 does not depend on the Fermi surface size. For equal
densities and small temperature differences between the
layers T1 ) T2, we obtain the cooling rate

& ¼ 1

Cel

dJ 12

dT
¼ 9$ð4Þk2BT2

#3"@ ln
T0

T
; (8)

where the heat capacity Cel ¼ ð#2=3Þk2BT%ð"Þ and the
density of states %ð"Þ ¼ 2"=ð#@2v2Þ for the degenerate
limit have been used. The rate & increases as " goes
towards neutrality, but is already quite large for " away
from neutrality. This is completely analogous to intralayer
scattering [25,26]. For typical values " ¼ 100 meV, T ¼
300 K, the rate & is about 10 ps%1, orders of magnitude
faster than typical electron-lattice cooling rates [12–14].
Vertical energy transfer couples heat transport in the two

layers, so that the layer temperatures T1, T2 obey

%r'1r!T1 þ að!T1 % !T2Þ þ (!T1 ¼ %r & jq;1
%r'2r!T2 þ að!T2 % !T1Þ þ (!T2 ¼ 0;

(9)

where jq;1 is the heat current [see Eq. (2)], and a ¼
dJ 12=dT [see Eq. (7)]. We consider only a response linear
in the applied current, j, neglecting the quadratic joule
heating term. Inverting the coupled linear equations, we
find an increase in temperature in layer 2, !T2ðrÞ, that is
driven by current in layer 1 as

!T2ðrÞ ¼ % a

L̂1L̂2 % a2
ðj1 & rÞQ½n1ðrÞ; T(; (10)

where L̂i ¼ %r'irþ aþ (. In what follows we sup-
press the ( term since electron-lattice cooling is slow.
Equation (10) then predicts a value for the interlayer

cooling length ~‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
'1'2=½ð'1 þ '2Þa(

p
, which yields a

value close to that for the mean free path ‘. The induced
temperature profile, !T2ðrÞ, creates thermal gradients
that can drive a local thermopower via E2ðrÞ ¼
%ðQ½n2ðrÞ(=TÞr!T2.
Spatial fluctuations in the thermopower are governed

by density fluctuations via Eq. (10). In particular, close
to neutrality the local thermopower will exhibit regions
of both positive and negative sign, leading to a spatial
pattern of the drag resistivity. As discussed above, the
correlations between !"1 and !"2, Eq. (1), lead to a
nonzero ensemble-averaged drag resistivity. In the limit
!"1;2 + kBT,"1;2 wewriteQiðrÞ ¼ hQiðrÞiþ @Q

@"i
!"iðrÞ.

Passing to Fourier harmonics via h!"1ðrÞ!"2ðr0Þi ¼P
qe

iqðr%r0Þh!"1ð%qÞ!"2ðqÞi, we obtain Eq. (5).

FIG. 3 (color online). (a) Total drag resistivity )ðtotÞ
21 ¼ )ðmÞ

21 þ
)ðeÞ
21 vs chemical potentials in the two layers, evaluated from

Eqs. (11) and (5) at T ¼ 100 K, producing a peak at "1;2 ¼ 0
(see text for parameter values used). (b, c) Slices "1 ¼ "2 and
"1 ¼ %"2 at different temperatures. Note a three-peak structure
in panel (b) and two sign changes close to CN in (c). (d)
Temperature dependence of the peak at "1;2 ¼ 0 in the diffusive
regime.
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This	brings	us	to	some	unresolved	problems	

1.  Do	the	layer	anD-correlate	due	to	arracDon	of	
oppositely	charged	puddles,	or	do	they	correlate	due	
to	common	charged	impuriDes	seen	by	both	layers?		

2.  Assuming	they	correlate/anD-correlate,	which	
mechanism	wins?	Momentum	or	energy	drag?		

Both	problems	remain	open.	



Summary	&	Discussion	
•  We	generalize	effecDve	medium	theory	to	Coulomb	

drag	for	the	first	Dme.	Applies	to	arbitrary	2D	systems.	
	
•  Inhomogeneity	is	required	to	explain	drag	experiments,	

as	is	the	case	for	single	layer	graphene	transport.	
	
•  Unresolved	issues	at	the	Dirac	point.		
•  CorrelaDon	vs	anD-correlaDon		
•  Momentum	vs	energy	drag	

•  Details	in	our	manuscript	at	arXiv:1611.03089v2	

	
	

	



Last	finding:	The	predicted	divergence	in	ρD		upon		
exciton	condensaDon	is	suppressed	by	puddles.		
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of drag resistivity, these occur at the double neutrality
point, and in the regions |Ē

F

| ⇠ k

B

T where the finite
density drag peaks occur, and they will be inside the re-
gion of averaging when Eq. (28) is true. Inhomogeneity
is negligible if E⇤

F

⌧ max(Ē
F

, k

B

T ) because the averag-
ing encompasses a region over which ⇢D does not change
much. Lastly, if E⇤

F

� max(Ē
F

, k

B

T ), then ⇢

E
D will be

approximately zero everwhere since the averaging win-
dow includes the high density regions where drag has
already gone to zero for all intents and purposes.

III. IMPACT OF INHOMOGENEITY ON
EXCITONIC DRAG
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Figure 3. (color online) Drag resistivity in the regime of ex-
citon condensation as a function of nA for di↵erent strengths
of charge density inhomogeneity n(A)

rms = n(P)
rms ⌘ nrms. nP is

held constant at �50⇥ 1010cm�2. Inset: ⇢D at nA = �nP =
50⇥ 1010cm�2 as nrms is varied.

Under the right conditions, electrons and holes in the
two layers are expected to bind together forming stable
bosonic excitons, which can condense into a superfluid
exciton condensate (see for instance Refs. [33] and [34]).
In particular, the drag resistivity of an exciton conden-
sate diverges as temperature approaches zero [29] because
the magnitude of drag conductivity approaches that of
the single layer conductivity. We demonstrate that this
divergence is suppressed in the presence of charge den-
sity inhomogeneity. We model the exciton condensate at
zero temperature using the following phenomenological

expressions for the various conductivities. The mono-
layer conductivity is given by

�

i

�

0

= A

����
n

i

n

0

����
↵

, (29)

and the drag conductivity by

�

D

�

0

= �A

✓
min(nA, nP)

n

0

◆
↵

✓
1� sgn(nAnP)

2

◆
(30)

+10�2

����
nAnP

n

0

����
1/2

✓
1 + sgn(nAnP)

2

◆
.

In the above, i = A,P is a layer index, and �

0

= e

2

h

,
n

0

= 1010cm�2. A and ↵ are phenomenological coe�-
cients that can be given arbitrary values depending on
the specific material under consideration. We note that
the above expressions produce the correct behavior in
various limits. When the passive layer is in open-circuit
configuration and no current flows in it, they lead to equal
electric fields in the two layers, as expected from Ref.
[29]. When the passive layer is short-circuited so that
there is no electric field across it, they yield equal charge
currents in the two layers.

In the absence of inhomogeneity (ie. n

(A,P)
rms

= 0), it
is clear from Eq. (24) that a divergence in ⇢

D

occurs
at perfectly matched opposite densities nA = �nP. To
investigate the e↵ect of density fluctuations on exciton
drag, we substitute the above conductivity expressions
into the EMT equations (22) and (23) and use the prob-
ability distributions in Eqs. (26) and (27) with various

values of n(A,P)
rms

. As shown in Fig. 3, density fluctuations
suppress the divergence in drag resistivity. Furthermore,
the magnitude of drag at perfectly matched densities goes

inversely as n

(A,P)
rms

as shown in the inset. Here, we have
used A = 5, ↵ = 1 and ⌘ = 0 but our numerics sug-
gest that these statements still apply for arbitrary values
of A and ⌘, and for all positive powers ↵. They also
apply regardless of the value of correlation coe�cient ⌘.
This finding demonstrates that sample inhomogeneity is
important when using drag resistivity as a probe of ex-
citon condensation and should be of great interest in the
ongoing search for exciton condensation [18, 21, 35].

IV. DRAG IN GRAPHENE SETUPS

In this section, we demonstrate that just as in single
layer graphene transport, inhomogeneity plays an impor-
tant role in graphene drag transport and it is necessary
to take inhomogeneity into account in order to explain
the experimental data in the literature. We begin with a
brief review of drag calculation.

Assuming	a	‘dancing	partner’	model	of	exciton	condensaDon,	
																													and		
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