Centre for Advanced 2D Materials

Theory of Coulomb drag in spatially inhomogeneous graphene

Derek Ho

(Shaffique Adam Group, CA2DM, NUS)

Collaborators:

Indra Yudhistira (CA2DM, NUS)

Ben Y. K. Hu (University of Akron, Ohio)

Shaffique Adam (Yale-NUS, CA2DM, NUS)

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE

SINGAPORE

For the details, see arXiv:1611.03089v2

Research . Innovation . Enterprise

Quantified by Drag Resistivity:

arXiv:1611.03089v2

Why is it important/interesting?

- 1. Measures pure electron-electron interaction.
- 2. New and interesting physics.
- Integer and fractional Hall <u>drag</u> effects
- Long-lived indirect excitons
- Excitonic superfluidity
- 3. Smoking gun experiment for the indirect exciton condensate
- 4. Renewed interest in Coulomb drag with new 2D materials.

Why graphene?

- 1. Electrons confined to a 2D atomic plane.
- 2. Unprecedentedly small layer separations ~ 1 nm allow for strong interlayer interactions.
- 3. Tunable charge densities allow exploration of both high and low density regimes.
- 4. Other 2D materials (TI's, black phosphorous, etc) are of interest too.

Lots of theoretical work has been done

Parabolic 2D Electron Gas

- 1. Jauho & Smith, PRB (1993)
- 2. Vignale & MacDonald, PRL (1996)
- 3. Many more...

Dirac Fermions

- 1. Tse et al, PRB (2007)
- 2. Narozhny et al, PRB (2012)
- 3. Many more...

$$\sigma_{D} = \frac{1}{16\pi k_{B}T} \int_{-\infty}^{\infty} \frac{d^{2}q}{(2\pi)^{2}} \int_{-\infty}^{\infty} \frac{d\omega}{\sinh^{2}(\frac{\hbar\omega}{2k_{B}T})} \Gamma^{x}(\omega, \mathbf{q}, \frac{\mu_{A}}{k_{B}T}) \Gamma^{x}(\omega, \mathbf{q}, \frac{\mu_{P}}{k_{B}T}) |V(q, \omega, d)|^{2}$$
$$\rho_{D} = -\frac{\sigma_{D}}{\sigma_{A}\sigma_{P} - \sigma_{D}^{2}} \qquad \text{'Momentum' drag}$$

Our motivation: How well does this standard theory agree with graphene experiment?

Lots of theoretical work has been done

Parabolic 2D Electron Gas

- 1. Jauho & Smith, PRB (1993)
- 2. Vignale & MacDonald, PRL (1996)
- 3. Many more...

Dirac Fermions

- 1. Tse et al, PRB (2007)
- 2. Narozhny et al, PRB (2012)
- 3. Many more...

$$\sigma_{D} = \frac{1}{16\pi k_{B}T} \int_{-\infty}^{\infty} \frac{d^{2}q}{(2\pi)^{2}} \int_{-\infty}^{\infty} \frac{d\omega}{\sinh^{2}(\frac{\hbar\omega}{2k_{B}T})} \Gamma^{x}(\omega, \mathbf{q}, \frac{\mu_{A}}{k_{B}T}) \Gamma^{x}(\omega, \mathbf{q}, \frac{\mu_{P}}{k_{B}T}) |V(q, \omega, d)|^{2}$$
$$\rho_{D} = -\frac{\sigma_{D}}{\sigma_{A}\sigma_{P} - \sigma_{D}^{2}} \qquad \text{'Momentum' drag}$$

- Our motivation: How well does this standard theory agree with graphene experiment?
- Using the standard theory above, let us calculate ρ_D while varying:
 - Layer densities, n_A, n_P
 - Temperature, T
 - We consider B=0 only for this work.

Standard theory vs Experiment $(n_A = -n_P = n)$

Why is there a discrepancy?

2D Materials are highly susceptible to charge density fluctuations

Ideal, No impurity-induced inhomogeneity

2D Materials are highly susceptible to charge density fluctuations

Ideal, No impurity-induced inhomogeneity

Realistic, Inhomogeneity from puddles/impurities

2D Materials are highly susceptible to charge density fluctuations

Ideal, No impurity-induced inhomogeneity

Realistic, Inhomogeneity from puddles/impurities

What is the effect of puddles on drag resistivity? What about interlayer correlations between puddes?

There is no established way of calculating this!

Solution: Effective Medium Theory (EMT)

EMT effectively models charge transport in graphene at the neutrality point

We derive an effective medium theory for the Coulomb drag problem.

Brief Derivation of Drag EMT

1. Take a pair of patches. Embed them into a pair of effective media.

Brief Derivation of Drag EMT

1. Take a pair of patches. Embed them into a pair of effective media.

Brief Derivation of Drag EMT

- 1. Take a pair of patches. Embed them into a pair of effective media.
- 2. Solve for E-fields inside each patch $E_i^{(A)}$ and $E_i^{(P)}$.

arXiv:1611.03089v2

Brief Derivation of Drag EMT

- 1. Take a pair of patches. Embed them into a pair of effective media.
- 2. Solve for E-fields inside each patch $E_i^{(A)}$ and $E_i^{(P)}$.
- 3. Require that average intra-patch field equals the effective medium field.

$$\sum_{i} P_i(n_i^{(A)}, n_i^{(P)}) E_i^{(A)} = E_0^{(A)},$$
$$\sum_{i} P_i(n_i^{(A)}, n_i^{(P)}) E_i^{(P)} = E_0^{(P)}$$

arXiv:1611.03089v2

Brief Derivation of Drag EMT

- 1. Take a pair of patches. Embed them into a pair of effective media.
- 2. Solve for E-fields inside each patch $E_i^{(A)}$ and $E_i^{(P)}$.
- 3. Require that average intra-patch field equals the effective medium field.

$$\sum_{i} P_i(n_i^{(A)}, n_i^{(P)}) E_i^{(A)} = E_0^{(A)},$$
$$\sum_{i} P_i(n_i^{(A)}, n_i^{(P)}) E_i^{(P)} = E_0^{(P)}$$

4. This yields three EMT equations whose solutions are the effective conductivities.

$$\begin{array}{c} \underbrace{E_{0}^{(A)}}_{\sigma_{E}^{(A)}} & \underbrace{E_{i}^{(A)}(n_{i}^{(A)})}_{\sigma_{i}^{(A)}(n_{i}^{(A)})} \\ \sigma_{E}^{(A)} & \sigma_{i}^{(A)}(n_{i}^{(A)}) \\ \hline \\ \sigma_{E}^{(D)} & \sigma_{i}^{(D)} & \sigma_{i}^{(D)}(n_{i}^{(A)}, n_{i}^{(P)}) \\ \hline \\ \underbrace{E_{0}^{(P)}}_{\sigma_{E}^{(P)}} & \underbrace{E_{i}^{(P)}(n_{i}^{(P)})}_{\sigma_{i}^{(P)}(n_{i}^{(P)})} \\ \end{array}$$

$$\int_{-\infty}^{\infty} dn'_{\mathrm{A}} P_{\mathrm{mono}}(n'_{\mathrm{A}}) \frac{\sigma_{\mathrm{A}}(n'_{\mathrm{A}}) - \sigma_{\mathrm{A}}^{\mathrm{E}}}{\sigma_{\mathrm{A}}(n'_{\mathrm{A}}) + \sigma_{\mathrm{A}}^{\mathrm{E}}} = 0,$$

$$\int_{-\infty}^{\infty} dn'_{\mathrm{P}} P_{\mathrm{mono}}(n'_{\mathrm{P}}) rac{\sigma_{\mathrm{P}}(n'_{\mathrm{P}}) - \sigma_{\mathrm{P}}^{\mathrm{E}}}{\sigma_{\mathrm{P}}(n'_{\mathrm{P}}) + \sigma_{\mathrm{P}}^{\mathrm{E}}} = 0,$$

$$\sigma_{\mathrm{D}}^{\mathrm{E}} = \sigma_{\mathrm{A}}^{\mathrm{E}} \frac{\int_{-\infty}^{\infty} dn'_{\mathrm{A}} \int_{-\infty}^{\infty} dn'_{\mathrm{P}} P_{\mathrm{bi}}(n'_{\mathrm{A}}, n'_{\mathrm{P}}, \eta) \cdot \left[\frac{\sigma_{\mathrm{D}}(n'_{\mathrm{A}}, n'_{\mathrm{P}})}{(\sigma_{\mathrm{A}}^{\mathrm{E}} + \sigma_{\mathrm{A}}(n'_{\mathrm{A}}))(\sigma_{\mathrm{P}}^{\mathrm{E}} + \sigma_{\mathrm{P}}(n'_{\mathrm{P}}))}\right]}{\int_{-\infty}^{\infty} dn'_{\mathrm{A}} \int_{-\infty}^{\infty} dn'_{\mathrm{P}} P_{\mathrm{bi}}(n'_{\mathrm{A}}, n'_{\mathrm{P}}, \eta) \cdot \left[\frac{\sigma_{\mathrm{A}}(n'_{\mathrm{A}})}{(\sigma_{\mathrm{A}}^{\mathrm{E}} + \sigma_{\mathrm{A}}(n'_{\mathrm{A}}))(\sigma_{\mathrm{P}}^{\mathrm{E}} + \sigma_{\mathrm{P}}(n'_{\mathrm{P}}))}\right]},$$

$$ho_{ ext{d} ext{d}$$

Quick Recap

arXiv:1611.03089v2

Obtain the effective drag resistivity that is measured in experiment.

Works for **any 2D material**! What do we get if we apply the formalism to drag in graphene?

A strong negative peak is seen at the double Dirac point...

But this contradicts with the energy drag theory (Song & Levitov, PRL 2012).

This brings us to some unresolved problems

- Do the layer anti-correlate due to attraction of oppositely charged puddles, or do they correlate due to common charged impurities seen by both layers?
- 2. Assuming they correlate/anti-correlate, which mechanism wins? Momentum or energy drag?

Both problems remain open.

Summary & Discussion

- We generalize effective medium theory to Coulomb drag for the first time. Applies to arbitrary 2D systems.
- Inhomogeneity is required to explain drag experiments, as is the case for single layer graphene transport.
- Unresolved issues at the Dirac point.
 - Correlation vs anti-correlation
 - Momentum vs energy drag
- Details in our manuscript at <u>arXiv:1611.03089v2</u>

Last finding: The predicted divergence in ρ_D upon exciton condensation is suppressed by puddles.

Assuming a 'dancing partner' model of exciton condensation,

$$\sigma_{ ext{d}} = \sigma_{ ext{A}} = \sigma_{ ext{P}} \quad ext{and} \quad
ho_{ ext{D}} = -rac{\sigma_{ ext{D}}}{\sigma_{ ext{A}}\sigma_{ ext{P}} - \sigma_{ ext{D}}^2} o \infty.$$

