Towards 2D Valleytronics

Johnson Goh

Institute of Materials Research and Engineering

CREATING GROWTH, ENHANCING LIVES

Inversion Symmetry

K. Behnia, Nature Nanotech. 7, 488 (2012)

Because materials matter

CREATING GROWTH, ENHANCING LIVES

Valley Physics in 2D Materials

nature physics

REVIEW ARTICLE

PUBLISHED ONLINE: 30 APRIL 2014 | DOI: 10.1038/NPHYS2942

Spin and pseudospins in layered transition metal dichalcogenides

Xiaodong Xu^{1*}, Wang Yao^{2*}, Di Xiao³ and Tony F. Heinz⁴

Table 1 Internal degree of freedom of Bloch electrons in 2D hexagonal	
crystals and the associated physical phenomena.	

	Spin	Valley pseudospin	Layer pseudospin
Magnetic moment	\checkmark	\checkmark	
Hall effect	\checkmark	×	
Optical selection rule	\checkmark	(\lambda	
Electrical polarization			\checkmark

Broken Inversion Symmetry

⇒ Valley contrasting properties (spin texture, Berry curvature)

mature materials

Valley magnetoelectricity in single-layer MoS₂

Jieun Lee^{1,2}, Zefang Wang¹, Hongchao Xie¹, Kin Fai Mak^{1*} and Jie Shan^{1*}

Because materials matter

CREATING GROWTH, ENHANCING LIVES

Materials Research and Engineering

Valleytronics Materials, Architectures, and Devices Workshop MIT Samberg Center, Cambridge, MA August 22–23, 2017

Organizing Committee Steven Vitale *MIT Lincoln Laboratory* steven.vitale@II.mit.edu Philip Kim *Harvard University* philipkim@g.harvard.edu Nuh Gedik *MIT* gedik@mit.edu Pablo Jarillo-Herrero *MIT* pjarillo@mit.edu

Confirmed Invited Speakers Allan MacDonald, UT Austin Artem Mishchenko, U of Manchester Daniel Gunlycke, NRL Feng Wang, UC Berkeley George Yu-Shu Wu, Nat. Tsing-Hua U Hongkun Park, Harvard University Jie Shan, Penn State University Kin Fai Mak, Penn State University Nuh Gedik, MIT Pablo Jarillo-Herrero, MIT Philip Kim, Harvard University Scott Crooker, Los Alamos Nat. Lab Tony Heinz, Stanford University Xlaodong Xu, U of Washington

Key Challenges

K. Behnia, *Nature Nanotech.* **7**, 488 (2012) X. Xu *et. al. Nature Phys.* **10**, 343 (2014)

Because materials matter

CREATING GROWTH, ENHANCING LIVES

Spin- & Angle-resolved Photoemission Spectroscopy

Band-structures - Synchrotron ARPES on TMDCs

Valley Polarization in 2D TMDCs

CREATING GROWTH, ENHANCING LIVES

Valley Polarization in TMDCs

Lab-based ARPES/SARPES in IMRE (A*STAR)

ADVANCED PHOTOELECTRON SPECTROSCOPY lab (B2-07 Synthesis Bld) (Since Sept 2016)

- 1. UFO transfer chamber
- 2. Preparation chamber
- 3. Analysis chamber

- UHV
- 11 300 K
- ARPES: 20 meV resolution
- SARPES: 150 meV resolution

ARPES/SARPES Capabilities in IMRE

Home-built CDPL System

Degree of Circular Polarization (DOCP, ρ)

$$\rho = \frac{I(\sigma^+) - I(\sigma^-)}{I(\sigma^+) + I(\sigma^-)}$$

 $I(\sigma^{+})$: Intensity of co-polarized emission $I(\sigma^{-})$: Intensity of counter-polarized emission

- ≻ Home-built
- Continuous Wave laser (λ= 594nm, 2.087 eV)
- Spot size 4 µm
- Power: 30 μW-100 μW

PL and CDPL in Monolayer WSe₂

Circular Dichoric PL

Valley polarization in MoS₂ monolayers by optical pumping

Hualing Zeng¹, Junfeng Dai^{2,1}, Wang Yao¹³, Di Xiao⁴ and Xiaodong Cui¹*

Control of valley polarization in monolayer MoS_2 by optical helicity

Kin Fai Mak¹, Keliang He², Jie Shan² and Tony F. Heinz^{1*}

Anomalous WS₂

Anomalously robust valley polarization and valley coherence in bilayer WS₂

Bairen Zhu^{a,1}, Hualing Zeng^{b,1,2}, Junfeng Dai^c, Zhirui Gong^a, and Xiaodong Cu

^aPhysics Department, University of Hong Kong, Hong Kong 999077, China; ^bPhysics Department, Chinese University of Hong Kong 400 Kong 999077, China; and ^cPhysics Department, South University of Science and Technology of China, Shenzhen 518055, China

Edited by Paul L. McEuen, Cornell University, Ithaca, NY, and approved July 3, 2014 (received for review April 16, 2014)

We report the observation of anomalously robust valley polarization and valley coherence in bilayer WS₂. The polarization of the photoluminescence from bilayer WS₂ follows that of the excitation source with both circular and linear polarization, and remains even at room temperature. The near-unity circular polarization of the indices is taken into account. Note that the spin-valley coupling strength in WS₂ is around 0.4 eV (the counterpart in MoS₂ ~ 0.16 eV), which is significantly higher than the interlayer hopping energy (~0.1 eV); the interlayer coupling at K and K' valleys in WS₂ is greatly suppressed as indicated in Fig. 1B (7, 9). Consequently,

Because materials matter

PNAS

Anomalous WS₂

Nanoscale, 2017,9, 5148-5154

Huimin Su,^a Chengrong Wei,^{ab} Aiving Deng,^a Dongmei Deng,^a Chunlei Yang^c an Uu-Feng Dai^{*a} Author affiliations * Corresponding authors

^a Department of Physics, South University of Science and Technology of China, Shenzhen 61805 China

^b Physics Department, The University of Hong Kong, Pokfulam road, China

^c Center for Photovoltaic and Solar Energy, Shenzhen Institutes of Advanced Technology, CAS, Shenzhen 518055, China

Because materials matter

YAL SOCIETY CHEMISTRY

Chellappan, Ooi, in prep.

CREATING GROWTH, ENHANCING LIVES

Hidden spin polarization in inversion-symmetric bulk crystals

Xiuwen Zhang^{1,2,3†}, Qihang Liu^{1,4†}, Jun-Wei Luo^{3*}, Arthur J. Freeman⁴ and Alex Zunger^{1*}

Compensated (hidden) spin polarization: R-2 and D-2 effects (**Fig. 1c**). These can arise in crystal structures where inversion symmetry is present in the bulk space group, but not in the site point groups (Fig. 1c). This is the case when the individual sites carry either a local dipole field (for R-2) or a site inversion asymmetric crystal field (for D-2). A combination of a bulk centrosymmetric

R2-D2 "Hidden" Local Spin Polarizations in Bulk Centrosymmetric Crystals

Bulk symmetry:	a Centrosymmetric	b Non-centrosymmetric (bulk inversion asymmetry)		c Centrosymmetric	
Site symmetry:	Inversion symmetry	Dipole field	Inversion asymmetry	Dipole field	Inversion asymmetry
Symmetry schematic:		Site diagle field	• Site inversion	Site directe field	
Effect/ consequence:	Absence of spin splitting and spin polarization	induced net spin polarization	Site inversion asymmetry induced net spin polarization	induced spin polarization compensated by its inversion counterpart	Site inversion asymmetry induced spin polarization compensated by its inversion counterpart
Name:		R-1	D-1	R-2	D-2

gure 1 | The three classes of spin polarization in nonmagnetic bulk crystals. a, Absence of coir olarization in centrosymmetric crystals if all atomic sites e inversion symmetric. As the local environment (crystit coupling induced spin plarization the total (e dipole field or the site ion with a non-centrosymmetric space group, these local version asymmetry le arization (R-2 and D-2 effects); a local fects produce bulk R ts, respectively. **c**, Compensated (Indiren) but te dipole field or the site inversion asymmetry leads to In combination with a effects, respectively. Here the spin polarization from entrosymmetric space group, the partners, but is readily visible when the results from individual sectors are observed. ich sector is concealed by compe

"Hidden" Spin Polarizations in Bulk TMDCs

Site point group	Non-ce	Centrosymmetric (all sites)		
	Non-polar (all sites) $(D_2, D_3, D_4, D_6, S_4, D_2, C_2, D_2, T, T_4, O)$	Polar (at le (C ₁ , C ₂ , C ₃ , C ₄ , C ₆ , C	$(C_i, C_{2h}, D_{2h}, C_{4h}, D_{4h}, S_6, D_{3d}, C_{6h}, D_{6h}, T_h, O_h)$	
Bulk space group	- 2a' - 3n' - 3n' - ' a' - '	Dipoles add up to zero	Dipoles add up to non-zero	
Non-centrosymmetric (for example, F43m)	a D-1 Example: GaAs, ZrCoBi	b D-1 Example: γ-LiAlO ₂	c R-1 & D-1 Example: BiTel, α-SnTe	Not possible (Site point group cannot be centrosymmetric if space group is non-centrosymmetric)
Centrosymmetric (for example, Rउॅंm)	d D-2 Example: Si, NaCaBi	e R-2 & D-2 Example: MoS ₂ , Bi ₂ Se ₃ , LaOBiS ₂ MOS ₂		f Absence of spin polarization Example: β-SnTe

Light in the valley?

PRL 114, 087402 (2015)

week ending 27 FEBRUARY 2015

Intrinsic Circular Polarization in Centrosymmetric Stacks of Transition-Metal Dichalcogenide Compounds

Qihang Liu,^{*} Xiuwen Zhang, and Alex Zunger[†] University of Colorado, Boulder, Colorado 80309, USA (Received 21 June 2014; revised manuscript received 28 January 2015; published 27 February 2015)

The circular polarization (CP) that the photoluminescence inherits from the excitation source in n monolayers of transition-metal dichalcogenides $(MX_2)_n$ has been previously explained as a special feature of *odd* values of n, where the inversion symmetry is absent. This "valley polarization" effect results from the fact that, in the absence of inversion symmetry, charge carriers in different band valleys could be selectively excited by different circular polarized light. Although several experiments observed CP in centrosymmetric MX_2 systems, e.g., for bilayer MX_2 , they were dismissed as being due to some extrinsic sample irregularities. Here we show that also for n = even, where inversion symmetry is present and valley polarization physics is strictly absent, such intrinsic selectivity in CP is to be expected on the basis of fundamental spin-orbit physics. First-principles calculations of CP predict significant polarization for n = 2 bilayers; from 69% in MoS₂ to 93% in WS₂. This realization could broaden the range of materials to be considered as CP sources.

Re-Learning Valley Polarization in TMDCs

PRL 114, 087402 (2015)

week ending 27 FEBRUARY 2015

Intrinsic Circular Polarization in Centrosymmetric Stacks of Transition-Metal Dichalcogenide Compounds

Qihang Liu,^{*} Xiuwen Zhang, and Alex Zunger[†] University of Colorado, Boulder, Colorado 80309, USA (Received 21 June 2014; revised manuscript received 28 January 2015; published 27 February 2015)

Circular Dichoric PL in MoS₂ due to R2-D2?

Valley polarization in ${\rm MoS}_2$ monolayers by optical pumping

Hualing Zeng¹⁷, Junfeng Dai^{2,17}, Wang Yao^{1,3}, Di Xiao⁴ and Xiaodong Cui^{1*}

Control of valley polarization in monolayer ${\rm MoS}_{\rm 2}$ by optical helicity

Kin Fai Mak¹, Keliang He², Jie Shan² and Tony F. Heinz^{1*}

Layer spin polarization in centrosymmetric TMDC single crystal: The case of bulk WS₂

Detecting 1st Layer Spin Polarization

WS₂ SARPES @ 300K

Bussolotti, in prep.

CDPL: Valley Polarization in WS2 mono- & multi-layers

> p increases with T, highest observed at ~150 K
> p decreases for T > 150 K, but up to ~40% remains at 300 K

Chellappan, Ooi, in prep.

DALATING EAGNATING ENGLANCING CIVER

Expectations vs Observations

Expectation for Valley Polarization	Observation/New understanding
ONLY if inversion symmetry broken	YES for MoS ₂ (CDPL: 2012) NO for WS ₂ (CDPL: 2015, 2017) NO for MoS ₂ , WSe ₂ (SARPES: 2014, 2016, 2017) NO , local SOC dominates (Theory: 2015)
Quenched at high T (inter-valley scattering)	YES for MoS ₂ and WSe ₂ in most studies NO for WS ₂ , in fact >70% for 4ML or more at 300K (2017)
Reduced as number of layers increases (inter-layer scattering)	YES for MoS ₂ (CDPL: 2012) NO for MoS ₂ , WSe ₂ (SARPES: 2014, 2016, 2017) NO for WS ₂ , apparent correlation with bandgap decrease with number of layers (CDPL 2017)

CREATING GROWTH, ENHANCING LIVES

Valleytronics Team

Team (IMRE): Fabio BUSSOLOTTI Zheng ZHANG Vijila CHELLAPPAN Christina PANG Zi En OOI Steven KOENIG Hiroyo KAWAI

Collaborators: Chorng Haur SOW (NUS) E. M. Elbert CHIA(NTU)

Thank you