

International standardization on graphene and other 2D materials: Status and future prospects

Recent Progress in Graphene & 2D Materials Research, RPGR 2017, Singapore, September 18-22, 2017

Dr. Norbert Fabricius

Secretary IEC/TC 113 Chair Graphene Flagship Standardization Committee KIT - Karlsruhe Institute of Technology

Partner International Standards Consulting www.isc-team.eu

IEC/TC 113: NANOTECHNOLOGY FOR ELECTROTECHNICAL PRODUCTS AND SYSTEMS

Standardization is one of the key issues for the industrialization of graphene enabled products

- October 2012: IEC/TC 113 held a workshop about "graphene" as a new field of interest in Milpitas, CA, USA
- October 2013: Establishment of the Graphene Flagship No need for standardization stated
- October 2014: Standardization as part of an open call in the Graphene Flagship
- October 2017: IEC/TC 113 has a track record on 19 workshops and invited talks regarding graphene standardization at international conferences

Standardization is one of the key issues for the industrialization of graphene enabled products

- Introductory remarks on standardization
- IEC/TC 113: The one-stop-shop for graphene standardization
- The international graphene standardization landscape
- Blank Detail Specifications and Key Control Characteristics measurement standards
- Future prospects: Standardization along the value adding chain

¥.	IEC/PAS 62565-2-1
	Edition 1.0 2011-03
PUBLICLY SPECIFICA PRE-STANDAR	´AVAILABLE ATION ₽
	Colpur Inside
Nanomanufacturing – Mat Part 2-1: Single-wall carbo	terial specifications on nanotubes Blank detail specification
Nanomanufacturing – Ma Part 2-1: Single-wall carbo	terini gocifications - on nanohubus - Bank detail specification
Nanomanufacturing – Mal Part 2-1: Single-wall carb	Jerini apscilications - on nanobubs - Blank detail specification
Nanomanufacturing – Man Part 2-1: Single-wall carbo Part 2015 Single-wall carbo Part 2004 Single-Wall	terial specifications - on nanolubes - Blank detail specification
Nanomanufacturing – Mai Part 2-1: Single-wall carbo Partenentone. REFERENTIONE. REFERENTIONE. COMMISSION	tetid ppolications - on nanobules - Blank detail specification

C	IEC/TS 62607-2-1
0	Edition 1.0 2012-05
TECHNICA SPECIFICA	
	● colour inside
Nanomanufacturing – Key Part 2-1: Carbon nanotube	control characteristics – materials – Film resistance
INTERNATIONAL ELECTROTECHNICAL COMMISSION	#02 CO2 P
INTERNATIONAL ELECTROTED-NICAL COMMISSION	ила сож Р вк/традория
INTERNATIONAL ELECTROTEDANOAL COMINISSION	Processor P 404-044-022-014

- Formal consensus based document developed by a Standard Developing Organization (SDO)
- SDOs provides consensus processes and rules to develop standards.
- SDOs provides maintaining procedures to ensure that standards at any time represents the state of the art of technology.
- Technical content of standards is within the responsibility of technical experts active in project teams of the SDO.
- IEC/ISO work according to the WTO Standards Code

Success Factors:

- Technical maturity of the content
- Engagement of technical experts
- Number of meetings:
 - 2 Face-to-face meetings per year
 - Online in between
- Not reinvent the wheel:
 - Prevent double work
 - Use or adopt-and-modify existing standards

Stakeholder regarding graphene standardization

Taken from "Nanoscale: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", www.rsc.org/nanoscale,

Example 1: Standardized specifications supports the supply chain

Taken from "Nanoscale: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", www.rsc.org/nanoscale,

Example 2: Measurement standards supports equipment availability

Taken from "Nanoscale: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", www.rsc.org/nanoscale,

If a company is part of a well established network based on close and long term bilateral co-operations:

- There is no need for standardization
- Those companies typically try to impede standardization

If a company wants to work with alternating suppliers to take profit from the competition among their suppliers

- They strongly depend from reliable standardized specifications
- Those companies support standardization

The experience is that companies who are active participating on standardization are more successful on the long term

- TC 113 Nanotechnology for electrotechnical products and systems
- Standardization of the technologies relevant to electrotechnical products and systems in the field of nanotechnology in close cooperation with other committees of IEC and ISO.

Nano-enabled electrotechnical product: "electrotechnical product exhibiting function or performance only possible with nanotechnology"

- TC 113 Nanotechnology for electrotechnical products and systems
- Standardization of the technologies relevant to electrotechnical products and systems in the field of nanotechnology in close cooperation with other committees of IEC and ISO.

Nano-enabled electrotechnical product: "electrotechnical product exhibiting function or performance only possible with nanotechnology"

- TC 113 Nanotechnology for electrotechnical products and systems
- Standardization of the technologies relevant to electrotechnical products and systems in the field of nanotechnology in close cooperation with other committees of IEC and ISO.

Nano-enabled electrotechnical product: "electrotechnical product exhibiting function or performance only possible with nanotechnology"

Standardization landscape "Graphene and other 2D-Materials"

Project leadership by countries (world wide)

Graphene projects IEC/ISO:

- 10/2014: Europe 17%
 - Start of standardization activities in the graphene flagship 10/2014
- 03/2016: Europe 50%
 - China joined 05/2016
- 10/2016: Europe 36%
- 03/2017: Europe 30%
- 10/2017: Europe 31%
 - China 19%

- Published: 2 (IEC/ISO)
- Majority led by IEC

Standardization landscape "Graphene and other 2D-Materials"

- BDS: Blank Detail Specification lists the KCCs and the related measurement methods
- KCC: Measurement standards for Key Control Characteristics
- Guideline: Guiding documents
 to write specifications
- SBDS: Sectional Blank Detail
 Specifications
- DS: Detail Specifications for special applications
- Quality, Reliability: Standards regarding quality and reliability assessment

EC Systematics of standards / Samples & Material Database (SMDB)

- BDS: Blank Detail Specification lists the KCCs and the related measurement methods
- KCC: Measurement standards for Key Control Characteristics
- Guideline: Guiding documents
 to write specifications
- SBDS: Sectional Blank Detail
 Specifications
- DS: Detail Specifications for special applications
- Quality, Reliability: Standards regarding quality and reliability assessment

ation	Sheet resistance	Conductance measurements using resonant cavity
etail Specific		Measurement of sheet resistance by the four-point probe method
e - Blank De		Measurement of sheet resistance by terahertz time- domain spectroscopy
-1: Graphen		Measurement of sheet resistance by the non- contact Eddy current method
62565-3	Number of layers	Determination of the number of layers by Raman spectroscopy combined with optical reflection

Content of IEC 62565-3-1 Blank Detail Specification Graphene

FOREWORD

- 1 Scope
- 2 Normative references
- 3 Terms, definitions
- 3.1 General graphene terms (Ref. 80004-13)
- 3.2 Terms related to procurement
- 3.3 Terms related to material description
- **3.4 Chemical key control characteristics**
- **3.5 Electrical key control characteristics**
- **3.6 Thermal key control characteristics**
- 4.7 Optical key control characteristics
- 3.8 Mechanical key control characteristics
- 3.9 Structural and dimensional key control characteristics

- 4 Measurement methods
- 5 Graphene specification format and recommended measurement methods
- **5.1 Procurement information**
- 5.2 General material description
- **5.3 Chemical key control characteristics**
- **5.4 Electrical key control characteristics**
- **5.5 Thermal key control characteristics**
- **5.6 Optical key control characteristics**
- 5.7 Mechanical key control characteristics
- 5.8 Structural and dimensional key control characteristics

Table 4 – Format for electrical key control characteristics

KCC No	ксс	Specification	Measurement method	F	Ρ	D
4.1 Shee	Shootrosistanco	Nominal[]±Tolerance[]Ω/sg	IEC/TS 62607-06-04	~		
			IEC/TS 62607-06-08			12
	Sheetresistance		IEC/TS 62607-06-09			•
			IEC/TS 62607-06-10			
4.2	Sheet conductance	Nominal[]±Tolerance[]S/sg	IEC/TS 62607-06-04	✓		√ ²
4.3	Conductivity	Nominal[] ± Tolerance[] S/m	IEC/TS 62607-06-01		√1	
4.4	Field effect carrier mobility	Nominal[] ± Tolerance[] cm²/Vs		✓		
4.5	Hall carrier mobility	Nominal[] ± Tolerance[] cm²/Vs		✓		
4.6	Work function	Nominal[] ± Tolerance[] meV		✓		

Note

1) Measured on pellets

2) Measured on films solidified according to suppliers specification

Example: Electrical Key Control Characteristics (IEC 62565-3-1)

Evaluation of fabrication quality by standardized methods

Example: Analysis of sheet resistance uniformity:

IECTS 62607-6-9 With courtesy of: Suragus GmbH, Germany

Example: Analysis batch reproducibility:

IEC/TS 62607-6-10 With courtesy of: das-Nano S.L., Spain

62607-06-10 / THz – TDS: Content

FOREWORD INTRODUCTION

- 1 Scope
- 2 Normative references
- **3 Terms, definitions**
- 4.General
- 4.1 Measurement principle
- 4.2 Measurement configuration
- 4.2.2 Reflection configuration examples 4.2.1 Transmission configuration
- 4.3 Measurement mode
- 4.3.1 Single point mode
- 4.3.2 Image scanning mode

- 4.4 Measurement system
- **4.4.1 Measurement equipment / apparatus**

- 4.4.2 Materials
- 4.4.3 Calibration standards
- 4.4.4 Ambient conditions
- 4.4.5 Sample preparation method
- **5.**Measurement procedure
- 5.1 Calibration of measurement equipment
- 5.2 Detailed protocol of the measurement procedure
- **5.3 Measurement accuracy**
- 6.Data analysis / Interpretation of results
- 7.Results to be reported

ANNEX

- A. Use case description
- **B.** Sampling plan
- **Test report** C.
- **D. Worked examples**

62607-06-10 / THz – TDS: Test report

Maturity and validation of the measurement standards

Voting is performed by the IEC members (countries) after they have achieved a consensus position in their country

Maturity and validation of the measurement standards

Standardization supports cooperation between the EU-Flagship and other EU projects like "Polygraph (FP7)", "Gladiator (FP7)", "GRACE" (Euramet EMPIR) as well as national funded projects.

Standardization supports cooperation between the EU-Flagship and other EU projects like "Polygraph (FP7)", "Gladiator (FP7)", "GRACE" (Euramet EMPIR) as well as national funded projects.

Use case analysis: Value adding chain

- Availability of a Standard Operating Procedure (SOP) for each fabrication step is mandatory
- Measurement standards for Key Control Characteristics (KCC) are SOPs for controlling and inspection within a fabrication process chain

Karlsruhe Institute of Technology: Contact

Operation of the secretariat IEC/TC 113: Karlsruhe Institute of Technology (KIT): norbert.fabricius@kit.edu

From right to left: Secretary Dr. Norbert Fabricius (KIT), Ass. Secretary Prof. Dr. Werner Bergholz (ISC), Ass. Secretary Gerd Weking (ISC)

This standardization activity is supported by:

