



# Synthesis and OLED use of Graphene By CVD

### Hui-Ming Cheng(成会明)

- 1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS, Shenyang, 110016, China
- 2. Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China

## **GRAPHENE'S SUPERLATIVES**



- thinnest known material in the universe
- strongest material ever measured (theoretical limit)
- stiffest known material (stiffer than diamond)
- most stretchable crystal (up to 20% elastically)
- **most impermeable** (even He atoms cannot squeeze through)
- recorded thermal conductivity (outperforming diamond)
- highest current density at room T (million times of those in copper)
- highest intrinsic mobility (100 times more than in Si)
- lightest charge carriers (zero rest mass)
- longest mean free path at room T (micron range)



### Potential Applications of Graphene and 2D Materials







#### **Flexible display**





Energy storage



AK Geim et al., *Nature Mater.* 6 (2007) 183 HB Heersche et al., *Nature* 446 (2007) 56 F Schedin et al., *Nature Mater.* 6 (2007) 652 YM Lin, et al, Science 327 (2010) 662 M Liu, et al. Nature 474 (2011) 64. **Solar cells** 

**Flexible OLED** 

S Stankovich et al., *Nature* 442 (2006) 282 X Wang et al., *Nano Lett.* 8 (2008) 323 T Ramanathan et al., *Nature Nanotech.* 3 (2008) 327 S Bae et al., Nature Nanotechnol. 5 (2010) 574 TH Han et al., Nature Photonics 6 (2012) 105

## **Main Synthesis Methods**



- Mechanical cleavage
  - High quality
  - Low productivity and controllability
- Epitaxial growth
  - Large size
  - Low productivity and high cost
  - Inhomogeneous and difficult to transfer
- Chemical exfoliation
  - Mass production and low cost
  - Low controllability and quality
- Chemical vapor deposition
  - High quality and large size
  - Easy to pattern and transfer
  - Reasonable productivity
- Molecular assembly

SYNL

Bottom up approach





KS Novoselov et al., Science 306(2004) 666



C Berger et al., J Phys Chem B 108 (2004) 19912



S Stankovich et al., Nature 442(2006) 282



A Reina et al., Nano Lett 9 (2009) 30.

### Low Pressure CVD for Graphene Growth on Cu





XS Li et al., Science 324 (2009) 1312.

S Bae et al., Nature Nanotechnol. 5 (2010) 574.



### Ambient Pressure CVD for Graphene Growth on Cu







Gao, Ren, Cheng, et al., Appl Phys Lett 97 (2010) 183109.

### **Challenges for OLED Application**

- High resistance
  - Low current density
- Low work function (4.2-4.6 eV)
  - Large hole injection barrier
- Hydrophobic surface
  - Difficult to deposite hole injection layer
- Residues and big roughness



Electrical micro-shorts







### **GO/G Vertical Heterostructure Anode**





SYNL

#### Jia, Du, Cheng, Ren et al., Nanoscale 8, 10714-10723 (2016)

### Current and power efficiency of small-size OLEDs







Jia, Du, Cheng, Ren et al., Nanoscale 8, 10714-10723 (2016)

### A 3 inch OLED with a Graphene Anode







**Graphene with PMMA as a supporting layer** 

### **PMMA Graphene: Big Surface Roughness**







SYNL



- Good solubility in solvents
  - Allows the support layer to be easily dissolved in the commonly used chemical solvents
- Low *E*<sub>ad.</sub> with the graphene surface
  - beneficial for the separation of the polymeric support layer
    from the graphene surface
- Sufficient support strength
  - effectively prevent fragmentation or tearing of the graphene film during transfer



### **Adsorption Ability of Different Molecules**







### **Ultraclean and Smooth Graphene Films**









Zhang, Du, Ma, Cheng, Ren et al., *Nature Commun* 8, 14560, 2017.

### **Uniform Graphene Films**







Zhang, Du, Ma, Cheng, Ren et al., Nature Commun 8, 14560, 2017.

### **OLED with Ultraclean Graphene**





## 4 inch Flexible OLED with Ultraclean Graphene Anode



In collaboration with Prof. Dongge Ma at CIAC, CAS



Zhang, Du, Ma, Cheng, Ren et al., Nature Commun 8, 14560, 2017.

### **The Commonly Used Transfer Method**



- Damage to the graphene
- Metal residues
- Environmental pollutions
- High cost

 Not suitable for chemically inert or noble metal substrates such as Pt because they are difficult to etch away completely or have a high cost





### **Nondestructive H<sub>2</sub> Bubbling Transfer method**





### $2 H_2O(I) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$

- No damage on metal substrate
- Highly efficient, no pollutions
- Easy to scale up
- Suitable for transferring graphene grown on any metals

Gao, Ren, Cheng, et al., *Nature Commun* 3 (2012) 699. Patents: ZL 201110154465.9; USA, EU, Japan, Korea Patents obtained.



## **Adhesive-Assisted R2R Bubbling Transfer**





- Etchant-free
- No transfer media (PMMA, PDMS etc.)
- Low-cost
- Highly efficient
- Environment-friendly





LP Ma, et al, Patent filed, 2016

### **CVD Grown Graphene: Polycrystalline**





#### Scale bar: 500 nm



PY Huang et al., *Nature* 469 (2011) 389.

## Growth of Single-Crystal Domains with Large Sizes by CVD

• Very low flow rate ratio of  $CH_4/H_2$ 



#### Hexagonal shape; very smooth zigzag edges



Gao, Ren, Cheng, et al., *Nature Commun* 3 (2012) 699.

### **Electronic Performance**





SYNL

Ma, Ren, Cheng et al., ACS Nano 8, 12806-12813 (2014)

### A meter-size single crystal Graphene film







## Graphene films with smaller grain size than the electron and phonon mean free paths (~a few hundreds of nanometers)

## Influence of grain size on the electrical and thermal transport properties



Ma, Cheng, Ren et al., Nature Commun., 8, 14486, 2017.

### **Graphene Growth on Cu and Ni**







RS Ruoff et al., Nano Letters, 2009

### Absorption ↔ Segregation



Carbon solubility: Cu (0.008 wt.%) < Pt (0.07 wt.%) < Ni (0.3 wt.%)





Surface growth + segregation + surface growth

# Tunable Uniform Grain Size with the Segregation T





SYNL

### **Well-Stitched Graphene Grains**







### **Well-Stitched Graphene Grains**





SYNL

### **Uniform High-Quality Monolayer**

MR



### **Influence on Electrical Transport**





- $\sigma = \sigma_0 \exp\{-Ea/[RT(I_q+c)]\}$  modified Arrhenius equation
  - Conductivity within in grain:  $\sigma_0 \approx 2.85 \times 10^6$  S m<sup>-1</sup>
  - Transport gap: *Ea* ≈ 0.01 eV; GB resistivity: 0.3 kΩ.µm
    - 1 nm:  $\sim$ 5.8 × 10<sup>5</sup> S m<sup>-1</sup>,  $\sim$ 10 times decrease



### **Influence on Thermal Transport**



- $\kappa^{-1} = \kappa_g^{-1} + (I_g G)^{-1}$  kinetic theory of phonon transport - Boundary conductance, ~3.8×10<sup>9</sup> Wm<sup>-2</sup>K<sup>-1</sup>
  - 1 nm: ~3.8 Wm<sup>-1</sup>K<sup>-1</sup>, ~1,400 times decrease

Ma, Cheng, Ren et al., Nature Commun., 8, 14486, 2017.





## Growth of 3-Dimensional Graphene Frameworks by CVD



Chen, Ren, HMC\*, et al., Nature Mater 10 (2011) 424

**Bulk Growth of Graphene by CVD** 



- Flat metal substrates
  - 2D graphene films (good for TCFs, devices,...)
  - Low yield
- Bulk growth of graphene by CVD?
  - Bulk applications (composites, energy storage, ...)
  - 2D growth $\rightarrow$ 3D growth



The Substrate is key !

# How to obtain graphene with unique structure and in a large scale by CVD?





Metal foil (plane)



Metal Particles (curved surface)



Metal foam (plane+curved surface)

Appl Phys Lett 97 (2010) 183109

Carbon 48 (2010) 3543

Nature Mater 10 (2011) 424

### Metal Foams

+ Plane+curved surface → 3D interconnected



+ High surface area  $\rightarrow$  growth in a large scale

### **Procedure for Synthesis of a GF**





GF

Infiltration

**GF/PDMS** 

SYNL

PMMA dissolving

**GF-PMMA** 

### **Free Standing Graphene Foam**





- Ultra-low density: ~5 mg/cm<sup>3</sup>, very light aerogel
- A very high porosity: ~99.7%

SYN

Specific surface area: ~900 m<sup>2</sup>/g

Chen, Ren, HMC\*, et al., Nature Mater 10 (2011) 424

### **Potential Applications of GFs**



#### **Elastic conductors**



Nature Mater, 2011 Flexible Batteries with fast

charging and discharging



SYNL

#### PNAS 2012; Adv Mater 2016

Lightweight EMI materials



#### Superhydrophobic materials



Small, 2013

#### Highly sensitive gas sensors



#### Scientific Reports, 2011

Protective coatings for microbial corrosion



Carbon, 2013

Adv Mater, 2013

## Summary



• CVD on metals is a powerful approach to grow

#### graphene

- Good controllability
- Large area
- Different grain sizes
- High quality
- Possible applications in flexible devices such as OLED



## Acknowledgment



- Prof. Wencai Ren
- Prof. Feng Li
- Prof. Jinhong Du
- Dr. Laipeng Ma
- Dr. Songfeng Pei
- Dr. Dongming Sun
- Dr. Lichang Yin
- Dr. Zhikun Zhang
- Prof. Ning Kang @ Peking Univ
- Prof. Lianmao Peng @ Peking Univ
- Prof. Feng Ding @ Polytech Univ, Hong Kong
- Prof. Xiuliang Ma @ IMR, CAS
- SYNL Prof. Xinhe Bao & Qiang Fu @ DICP, CAS

- Dr. Zhong-Shuai Wu (Chem exfoliation)
- Dr. Libo Gao (CVD Graphene)
- Dr. Teng Ma (G mechanism)
- Dr. Zongping Chen (3D graphene)
- Dr. Chuan Xu (2D TMCs)
- Dr. Yang Gao (2D TMDs)
- Dr. Guangmin Zhou (Li-S batteries)
- Dr. Zhibo Liu (TEM)
- Mr. Long Chen (2D TMCs)
- Mr. Shuai Jia (OLEDs)

## Acknowledgement









• Deyang Jinghua New Carbon Co.





Thank you very much

for your kind attention!

