Emerging 2D/0D Heterostructures: Spectroscopic Studies and Device Applications

Suman Kalyan Pal Associate Professor

School of Basic Sciences, Indian Institute of Technology Mandi, H.P, India. *RPGR 2017, 22nd September, 2017*

Outline

- ➢ Introduction
- Motivation
- > Experimental results
- Conclusions

Introduction

Organic electronics

BHJ OPV

ETL

HIT

e-paper

Anode

A.J. Heeger A. G. MacDiarmid H. Shirakawa Electronics with carbon-based materials Organic electronics is electronic devices in which semiconductor is an organic material

Organic semiconductors

Introduction

Organic solar cells

The general mechanistic picture:

- Light absorption and exciton formation
- Exciton migration
- Exciton dissociation
- Charge transport
- Charge collection

Benefits

- Light weight and flexible
- Vacuum free coating process
- ➢ Cheap

Drawback

- Poor charge transport
- Less solar light absorption

Introduction

2D materials

"A material in which the atomic organization and bond strength along two-dimensions are similar and much stronger than along a third dimension".

Butler et al. ACS Nano, 2013, 7, 2898–2926

Transition metal dichalcogenides (TMDCs): 2D semiconductors

Chemical formula MX₂ (X-M-X) M transition metal (M = Mo, W, Nb, Ta, Ti, Re) X chalcogen like S, Se or Te

Promising features for next generation electronic devices

Why TMDCs ?

> High charge carrier mobility (>500 cm² V⁻¹ s⁻¹)

- Tunable band gap
- Large light capture cross section
- Layer dependent optoelectronic property

Challenges

Exfoliation in non-polar solvents

Preservation of semiconductive nature (phase integrity)

> Integration in organic semiconductor (conjugated polymer) devices

Motivations

•Preparing semiconducting TMDCs in non-polar solvent for organic electronic applications

o Preparation of 2D heterostructures

• Study of their optical and electrical properties

✓ Synthesis of TMDCs nanostructures modified by organic semiconductors is a fascinating idea

Experimental

Materials preparation

"Semiconductive Polymer Assisted Chemical Exfoliation (SPACE)"

Pal and coworkers ACS Omega 2017, 2, 4333–4340; J. Phys. Chem. C 2017, DOI: 10.1021/acs.jpcc.7b07132

Results

X-ray diffraction

- Absorption peaks of MoS₂ : 614 nm and 673 nm
- ➢ MoS₂ has been modified by P3HT.
- □ Diffraction peaks located at $2\theta = 14^{\circ}$, 33° , 40° , 50° , and 59° corresponding to the planes of (002), (100), (103), (105) and (110) of hexagonal MoS₂
- \Box 2 θ =14°:production of a few layers did not change the structure of MoS₂

Average flakes size of MoS₂ : 150 nm
 Blur image: presence of polymer coat

 Six fold symmetry : highly crystalline
 Hexagonal pattern with lattice spacing 2.7 Å Pal and coworkers J. Phys. Chem. C 2017, DOI: 10.1021/acs.jpcc.7b07132

Blur image, MoS₂ sheets are soft polymer coated
 MoS₂ flakes distribution lateral dimensions between few nm to few hundred nm
 Average thickness ~3 nm

Pal and coworkers J. Phys. Chem. C 2017, DOI: 10.1021/acs.jpcc.7b07132

India

Institute of Technology Mandi

 $\Box \Delta \omega = 25 \text{ cm}^{-1} \text{ for PG1-MoS}_2 (4 \text{ layers})$

Kim et.al, Nano Lett. 2015, 15, 229–234. Liu et. al, ACS Nano., 2013, 7, 4202–4209.

Results

Negligible restacking

Chemical stability in chloroform

Photoluminescence of P3HT is quenched (90 %)

Electron transfer rate~1.2×10⁸ s⁻¹

Results

Confocal image of MoS₂

□ Single flake Photoluminescence

Confocal image of PG1-MoS₂

Indian Institute of Technology

Mandi

Photoluminescence is quenched
Pal and coworkers J. Phys. Chem. C 2017, DOI: 10.1021/acs.jpcc.7b07132

Results

Photoluminescence decay of a single flake of MoS₂ and PG1-MoS₂

	$\tau_1(ns)$	A ₁ (%)	$\tau_2(ns)$	A ₂ (%)	τ (ns)	χ^2	τ_{av} (ns)
MoS ₂	1.33	43	0.31	57	1.09	1.0	
MoS ₂	1.65	34	0.39	66	1.24	1.0	1.14 ± 0.04
MoS ₂	1.28	49	0.28	51	1.09	1.0	
PG1- MoS ₂	0.91	14	0.09	86	0.60	1.0	
PG1- MoS ₂	1.1	12	0.12	88	0.64	1.1	0.62±0.04
PG1- MoS ₂	1.2	6	0.09	94	0.62	1.2	

Photoluminescence quenching infers the interaction between the photoexcited MoS₂ and P3HT Pal and coworkers J. Phys. Chem. C 2017, DOI: 10.1021/acs.jpcc.7b07132

Excitation of P3HT: Electron transfer
 Excitation of MoS₂: Hole transfer

Efficient breaking of excitons: the formation of P3HT/MoS₂ nanoheterojunction (type-II)

Electron transfer rate~1.2×10⁸ s⁻¹ Hole transfer rate~7.2×10⁸ s⁻¹ Simultaneous light harvesting followed by charge separation: Photovoltaic performance

Results

Photovoltaic device structure with energy level diagram

Pal and coworkers J. Phys. Chem. C 2017, DOI: 10.1021/acs.jpcc.7b07132

Results

Schematic of Device

I-V characteristics

Indication of resistive switching
 High ON/OFF ratio (~10⁴)
 Memory effect: due to formation of Van der Waal heterojunctions (type-II)

≻ High-resistance state (HRS) (0 to -2 V),
 V_{set} ~1.99 V V_{RESET} ~ -1.99 V
 ≻ Indication resistive switching process

Pal and coworkers J. Phys. Chem. C 2017, DOI: 10.1021/acs.jpcc.7b07132

Results Variable temperature Raman spectra of PG -MoS₂ and -MoSe₂

□ Peak position shift towards lower wave number

Both modes vary linearly with temperatures Pal and coworkers ACS Omega 2017, 2, 4333–4340 Grüneisen model $\omega(T) = \omega_0 + \chi T$

Results

 ω_0 is the frequency of the vibration of E_{2g}^1 or A_{1g} modes at absolute zero of temperature

412

408

(Lunar peak position (cm.) 404 396 388 388

384

380

 χ is the first order temperature coefficient of the E¹_{2g} or A_{1g} modes

Pal and coworkers ACS Omega 2017, 2, 4333-4340

Time delay / ps

Pal and coworkers ACS Energy Lett. 2017, 2, 1879–1885

the

of

Take away from this study

✤ MoS₂ nanosheets/CdSe QDs form 2D/0D p-n heterostructures where excitons break via hole transfer

✤Biexcitons dissociate at the heterostructures in steps: the hole first injects within 42 ps, followed by slow injection (in 600 ps) of the second one

Pal and coworkers ACS Energy Lett. 2017, 2, 1879–1885

Conclusions

- ✓ MoS_2 nanosheets have been prepared successful via "*polymer assisted*" method, where MoS_2 2H-phase is preserved.
- ✓ *Polymer grafting* does not affect the electron phonon interaction in MoS_2 .
- ✓ Polymer grafted .MoS₂ forms a p-n (van der Walls) heterostructure where charge carriers are formed following excitation breaking.
- ✓ PG- MoS₂ nanosheets could be used for photovoltaic as well as memory devices.
- ✓ Collection of multiple charges via dissociation of biexcitons at the 2D/0D interface is a feasible scenario.

This is an open access article published under an ACS AuthorChoice <u>License</u>, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

http://pubs.acs.org/journal/acsodf

Electron-Phonon Interaction in Organic/2D-Transition Metal Dichalcogenide Heterojunctions: A Temperature-Dependent Raman Spectroscopic Study

Abdus Salam Sarkar and Suman Kalyan Pal*®

School of Basic Sciences & Advanced Materials Research Centre, Indian Institute of Technology Mandi, Kamand, 175005 Mandi, Himachal Pradesh, India

Supporting Information

ABSTRACT: The heterojunctions of organic/two-dimensional transition metal dichalcogenides (TMDs) have the potential to be used in the next-generation optoelectronic and photonic devices. Herein, we have systemically investigated the temperature-dependent Raman spectroscopy to elucidate the phonon shift and thermal properties of the semiconducting TMD nanosheets grafted by a conjugated polymer (PG-MoS₂ and PG-MoSe₂) forming heterojunctions. Our results reveal that softening of Raman modes of PG-TMDs as temperature increases from 77 to 300 K is due to the negative temperature coefficient (TC) and anharmonicity. The TCs of E¹_{2g} and A_{1g}

modes of PG-MoS₂ nanosheets and A_{1g} mode of PG-MoŠe₂ were found to be -0.015, -0.010, and -0.010 cm⁻¹ K⁻¹, respectively. The origin of negative TCs is explained on the basis of a double resonance process, which is more active in singleand few-layer MoS₂ and MoSe₂. Interestingly, the temperature-dependent behavior of the phonon modes of PG-MoS₂ and PG-MoSe₂ is similar to that of pristine nanosheets. Grafting by conjugated polymer does not affect the electron–phonon (e–p) interaction in the semiconducting (2H-phase) TMDs, hinting the application potential of such materials in field-effect electronic devices.

http://pubs.acs.org/journal/aelccp

Multiple Exciton Harvesting at Zero-Dimensional/Two-Dimensional Heterostructures

Aamir Mushtaq, Supriya Ghosh, Abdus Salam Sarkar, and Suman Kalyan Pal*®

School of Basic Sciences and Advanced Material Research Center, Indian Institute of Technology Mandi, Kamand 175005, H.P., India

Supporting Information

ABSTRACT: Heterostructures of zero-dimensional/two-dimensional (0D/2D) materials, especially quantum dots (QDs)/nanosheets (NSs), have attracted significant attention for extracting photogenerated electrons and holes. Herein, we report the dissociation of excitons at the heterojunction of CdSe (cadmium selenide) QDs and MoS₂ (molybdenum disulfide) nanosheet utilizing steady-state and time-resolved spectroscopic techniques. Quasi type II semiconductor-like band energy alignment of the 0D/2D heterojunction facilitates exciton breaking via hole transfer from the QD to MoS₂. Furthermore, we demonstrate the extraction of two holes from doubly excited QDs (created via high-power excitation) following the dissociation of a biexciton at the 0D/2D interface. This work is expected to provide

a new approach of exploiting multiple exciton generation in quantum dot-sensitized solar cells by harvesting multiple carriers.

Group

Acknowledgements

Advanced Materials Research Centre for sophisticated characterization facilities.

Funding Agencies:

लल्पमेच जयते Science and Engineering Research Board (SERB) Department of Science and Technology (DST) Govt. of India

THANK YOU

TA measuring setup

Experimental setup

Femtosecond Transient absorption measuring system