Che-Yi Lin ${ }^{1}$

Tsu-Ming Chen², Chang-Hung Chen², Yen-Fu Lin², Wen-Bin Jian¹
${ }^{1}$ Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
${ }^{2}$ Department of Physics, National Chung Hsing University, Taichung, Taiwan
joe801105@gmail.com

Explore intrinsically electrical characteristics of atomically thin SnS_{2} flake

Abstract

The interface problems in nanowire-based electronics play important roles in nanoelectronics multiply enormously the contribution of electrical contact properties. Here, the intrinsically electrical characteristics of atomically thin SnS_{2} field effect transistor (FET) device were explored in detail. Four layers (c.a. 2.3 nm) of SnS_{2} flakes were obtained via mechanical exfoliation from a semiconducting SnS_{2} bulk crystal grown by chemical vapor transport and then deposited on a heavily doped Si substrate covered with a 285 -nm-thick SiO_{2} layer. The number of layers for SnS_{2} flakes was quickly determined by images existing difference in the contrast of the color of optical microscope and atomic force microscope. To investigate the electrical properties of atomically thin SnS_{2} flakes, SnS_{2} FETs were fabricated using standard e-beam lithography and thermal evaporation. As the experimental results, the good performance, including a high on/off ratio up to 10^{5} and a mobility $\sim 3.2 \mathrm{~cm}^{2} \mathrm{~V}$ ${ }^{1} \mathrm{~s}^{-1}$, of SnS_{2} FET applied in this study can be achieved. Moreover, on the basis of analysis of temperature dependent resistance between two- and four-terminal FETs, we found that the resistance increases with temperature decreasing. The contact resistance can be extracted to c. 5% of total resistance, implying the contact resistance can be eliminated without additional treatment during fabrication processes of SnS_{2} FETs. Besides, we report the unprecedented measurements, low frequency noise, of SnS_{2}-based FETs. The measured results provide detailed insights of the electrical properties of SnS_{2} FETs for the first time, might be useful for optoelectronic nanodevice applications in industrial.

