Che-Yi Lin¹ Tsu-Ming Chen², Chang-Hung Chen², Yen-Fu Lin², Wen-Bin Jian¹ ¹Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan ²Department of Physics, National Chung Hsing University, Taichung, Taiwan

joe801105@gmail.com

Explore intrinsically electrical characteristics of atomically thin SnS₂ flake

Abstract

The interface problems in nanowire-based electronics play important roles in nanoelectronics multiply enormously the contribution of electrical contact properties. Here, the intrinsically electrical characteristics of atomically thin SnS₂ field effect transistor (FET) device were explored in detail. Four layers (c.a. 2.3 nm) of SnS₂ flakes were obtained via mechanical exfoliation from a semiconducting SnS₂ bulk crystal grown by chemical vapor transport and then deposited on a heavily doped Si substrate covered with a 285-nm-thick SiO₂ layer. The number of layers for SnS₂ flakes was quickly determined by images existing difference in the contrast of the color of optical microscope and atomic force microscope. To investigate the electrical properties of atomically thin SnS₂ flakes, SnS₂ FETs were fabricated using standard e-beam lithography and thermal evaporation. As the experimental results, the good performance, including a high on/off ratio up to 10⁵ and a mobility ~3.2 cm²V-¹s⁻¹, of SnS₂ FET applied in this study can be achieved. Moreover, on the basis of analysis of temperature dependent resistance between two- and four-terminal FETs, we found that the resistance increases with temperature decreasing. The contact resistance can be extracted to c. 5 % of total resistance, implying the contact resistance can be eliminated without additional treatment during fabrication processes of SnS₂ FETs. Besides, we report the unprecedented measurements, low frequency noise, of SnS₂-based FETs. The measured results provide detailed insights of the electrical properties of SnS₂ FETs for the first time, might be useful for optoelectronic nanodevice applications in industrial.