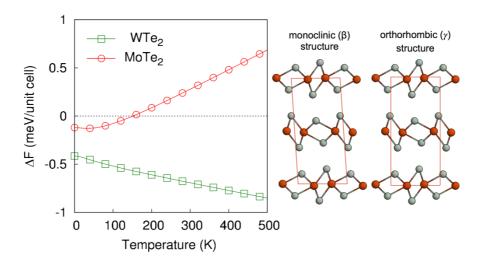
Hyun-Jung Kim¹

Seoung-Hun Kang¹, Ikutaro Hamada², Young-Woo Son¹ ¹Korea Institute for Advanced Study, Hoegiro 85, Seoul, Korea ²National Institute for Materials Science, Tsukuba, Japan

infant@kias.re.kr


Contrasting structural and electrical phase transition behaviors of layered transition metal dichalcogenides MoTe₂ and WTe₂

Layered transition metal dichalcogenides MoTe₂ and WTe₂ share almost similar lattice constants as well as topological electronic properties except their structural phase transitions. While the former shows a first-order phase transition between monoclinic and orthorhombic structures, the latter does not. Using a recently proposed van der Waals density functional method [1], we investigate structural stability of the two materials and uncover that the disparate phase transitions originate from delicate differences between their interlayer bonding states near the Fermi energy [2]. By exploiting the relation between the structural phase transitions and the low energy electronic properties, we show that a charge doping can control the transition substantially, thereby suggesting a way to stabilize or to eliminate their topological electronic energy bands.

References

- 1. I. Hamada, Phys. Rev. B, 89 (2014) 121103.
- 2. H.-J. Kim, S.-H. Kang, I. Hamada, and Y.-W. Son, Phys. Rev. B, 95 (2017) 180101(R).

Figures

Figure 1: Calculated free energy difference $\Delta F = F_{\gamma} - F_{\beta}$ between monoclinic (β) and orthorhombic(γ) structure, where $F_{\beta(\gamma)}$ is a free energy of $\beta(\gamma)$ structure.