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Recent years have witnessed an enormously rapid development of quantum computational 

devices of intermediate size. For instances of paradigmatic settings such as sampling prob-

lems, such existing quantum devices already come close to outperforming or outperform 

classical supercomputers for the same task, in settings that are equipped with a precise and 

rigorous complexity theoretic underpinning. In this talk, we start from looking at such quantum 

advantage schemes that can be efficiently verified by means of local quantum measure-

ments [1], leading to a proof-of-principle-experiment involving trapped ions [2]. These steps 

suggest to investigate more practically motivated 

quantum advantages.  

 

In the main part of the talk, we will explore to what 

extent quantum-assisted machine learning tasks 

could be candidates for this. Specifically, we look 

in great detail at a proven exponential separation 

of quantum learners over classical ones in a mean-

ingful quantum machine learning task [3]. Con-

cretely, we study the comparative power of classi-

cal and quantum learners for generative modelling 

within the Probably Approximately Correct (PAC) 

framework. More specifically we consider the following task: Given samples from some un-

known discrete probability distribution, output with high probability an efficient algorithm for 

generating new samples from a good approximation of the original distribution. Our primary 

result is the explicit construction of a class of discrete probability distributions which, under 

the decisional Diffie-Hellman assumption, is provably not efficiently PAC learnable by a clas-

sical generative modelling algorithm, but for which we construct an efficient quantum 

learner. We will investigate encoding non-agnostic generalization bounds (fig. 1) for 

quantum-assisted machine learning with parameterized quantum circuits [4]. In the last part 

of the talk, we will explore the possibility of learning output distributions of short quantum 

circuits [5], and will discuss what degree of structure is needed, after all, to expect a quantum 

advantage in meaningful quantum-assisted machine learning tasks. 
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Figure 1: A parametrized quantum circuit. 


