Quantum Interference between Identical Photons from Remote Quantum Dots

Liang Zhai

Giang N. Nguyen, Clemens Spinnler, Julian Ritzmann, Matthias C. Löbl, Andreas Wieck, Arne Ludwig, Alisa Javadi, Richard J. Warburton

University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland Ruhr-Universität Bochum, DE-44780 Bochum, Germany liang.zhai@unibas.ch

Advances in photonic quantum technologies calls for creation, manipulation and detection of a large number of identical single photons. Self-assembled quantum dots represent a semiconductor platform that creates single photons in a neardeterministic manner [1]. They benefit from the established semiconductor fabrication facilities; they can be integrated into various nano- and micro-structures. For applications, however, a significant roadblock is the poor quantum coherence upon interfering single photons created by two or more independent quantum dots [2, 3]. In other words, the photons created by different quantum dots are not identical.

Here, we present two-photon interference with a 93% interference visibility (Fig. 1) from two quantum dots separated in different cryostats [2]. This high visibility is achieved rigorous conditions: under no Purcell enhancement, no temporal post-selection, spectral filtering, and no narrow no frequency stabilisation. The key to the high value is the employment of gated GaAs quantum dots in a p-i-n diode [4]. Exploiting the current photonic engineering technologies, our result presents a route to creating single photons with more than 99% similarity in every aspect from separate quantum-dot based photon sources.

The identical photons allow a photonphoton entangled state to be created. We demonstrate a CNOT operation using the remote quantum dots photons and standard linear optics. The average CNOT process fidelity is ~88% and the output entanglement fidelity is ~85%. Such an entangled state marks a first step towards involving multiple – not just one – quantum-dot based singlephoton sources for quantum applications. Our results establish gated GaAs quantum dots as interconnectable sources to scale the creation of identical single photons.

Figure 1: Hong-Ou-Mandel interference between photons from two separate quantum dots. (a) A sketch of the interference experiment. (b) Hong-Ou-Mandel (HOM) experiment showing an interference visibility of 93%.

References

- N. Tomm, et al., Nat. Nanotechnol. 16, 399 (2021)
- [2] L. Zhai, et al., arXiv:2106.03871 (2021).
- [3] J. Weber, et al., Nat. Nanotechnol. 14, 23 (2019)
- [4] L. Zhai, et al., Nat. Commun. 11, 4745 (2020)

QUANTUMatter2022