Witnessing Quantum Correlations in a Nuclear Spin Ensemble via a Proxy Qubit

Leon Zaporski^{1,*}

Dorian A. Gangloff^{1,*}, Jonathan H. Bodey^{1,*} Clara Bachorz¹, Daniel M. Jackson¹, Gabriel Ethier-Majcher¹, Constantin Lang¹, Edmund Clarke², Maxime Hugues³, Claire Le Gall¹, Mete Atatüre¹

¹Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK ²EPSRC National Epitaxy Facility, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK ³Universite Cote d'Azur, CNRS, CRHEA, rue Bernard Gregory, 06560 Valbonne, France

lz412@cam.ac.uk

A coherent ensemble of spins interfaced with a proxy qubit is an attractive platform to create many-body coherences and probe the regime of collective excitations. An electron spin qubit in a semiconductor auantum dot is a realisation of such an interface to a dense nuclear spin ensemble consisting of multiple high-spin species. In this work, we demonstrate a speciesselective spin-state reconstruction of a nuclear ensemble that exploits its response to the electron-mediated injection of collective nuclear excitations [1,2]. Followina optical preparation of a reduced-variance, polarised nuclear state [1,2], we probe the electron spin population as a function of the ESR detuning. Figure 1a displays two example ESR spectra for positive (top) and negative (bottom) mean nuclear polarisation. The difference of ESR Rabi frequencies Ω_{\pm} , corresponding to nuclear resonances blueand red-detuned from the ESR, is used to obtain information about nuclear populations. The sum over reconstructed species-resolved polarisations, expressed as an asymmetry-commensurate mean field, exceeds threefold the expected mean field for a classically correlated ensemble (Fig. 1b). This stark deviation follows from a spin ensemble that contains inter-particle coherences, and manifests the formation of a dark many-body state [3]. Honing further

control over the nuclear-state coherences shown here offers a route to a quantum memory hosted in a low-polarisation decoherence-free subspace [3].

Figures

Figure 1 (a) Electron $|\downarrow\rangle$ population as a function of ESR detuning δ , following a 1-µs drive for positive (top) and negative (bottom) prepared Overhauser shifts. Grey curves are reference spectra at zero-polarisation ($I_z = 0$). (b) Derived asymmetry-commensurate Overhauser field versus Overhauser field setpoint. The solid black curve is a fit to the data with a slope of 2.9(1). The shaded coral region indicates the range of indium concentrations x = 0.25-0.75. The dashed line with a slope of 1 is the mean field that would be reconstructed for a classical nuclear state. Solid curve is the data passed through a first-order Savitzky-Golay filter with a 1.6-GHz window. Error bars indicate a 67% confidence interval.

References

- D. A. Gangloff et al, "Quantum interface of an electron and a nuclear ensemble," Science 364, 62– 66 (2019).
- [2] D. A. Gangloff et al, "Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit," Nature Physics 17, 1247–1253 (2021)
- [3] J. M. Taylor, C. M. Marcus, and M. D. Lukin, "Long-Lived Memory for Mesoscopic Quantum Bits," Phys. Rev. Lett. 90, 4 (2003).

QUANTUMatter2022