## An Intracavity Rydberg Superatom for Quantum Engineering of Light

## Alexei Ourjoumtsev

Julien Vaneecloo, Sébastien Garcia

JEIP, UAR 3573 CNRS, Collège de France, PSL University, 11, place Marcelin Berthelot, 75005 Paris, France

alexei.ourjoumtsev@college-de-france.fr

We demonstrate a new approach for creatina deterministic photon-photon interactions for optical quantum engineering, based on a single-ended medium-finesse optical cavity containing a atomic ensemble. mesoscopic This ensemble is made transparent by a laser beam mapping intracavity photons into Rydberg polaritons. The transparency vanishes when the cloud, acting as a single collective two-level superatom with an enhanced coupling to light, is driven from the ground to a Rydberg state. We observe collectively-enhanced Rabi oscillations these between states and optically discriminate them in a single shot with a 95% efficiency. Most importantly, we show that a change between the two internal states of the superatom induces a  $\pi$  phase rotation on the light reflected off the cavity. These ingredients form a complete set of tools for photonic implementing deterministic entangling gates and for generating highly non-classical light without the need for a low-volume high-finesse cavity.

## References

 J. Vaneecloo, S. Garcia, A. Ourjoumtsev, arXiv: 2111.09088, Phys. Rev. X in press (2022).

## Figures



Figure 1: Optical  $\pi$  phase rotation conditional on the state of a two-level Rydberg superatom. A small Rydberg-blockaded cloud of cold Rb atoms, acting as a two-level superatom with a ground state  $|G\rangle$  and a Rydberg state  $|R\rangle$ , is strongly coupled to a single-ended optical cavity. (a) When the superatom is  $in |G\rangle$ , the control beam (blue) creates electromagnetically-induced transparency (EIT) and converts probe photons into dark Rydberg polaritons. In this case, the absorption of the cloud being much smaller than the transmission T of the resonator's input/output coupling mirror, the system is optically overcoupled. The probe field is then reflected with a phase  $\pi$ , measured with a homodyne detector in our experiment. The inset shows a single-shot homodyne trace with 2µs binning, where errorbars correspond to standard errors. (b) When the superatom's state is coherently rotated to  $|R\rangle$ , the strong Rydberg blockade destroys the EIT and makes the system optically undercoupled: the probe field is then reflected with a phase 0, leading to a sign flip of the homodyne signal. The homodyne trace in the inset shows a quantum jump from  $|R\rangle$  back to  $|G\rangle$  around t=25µs.