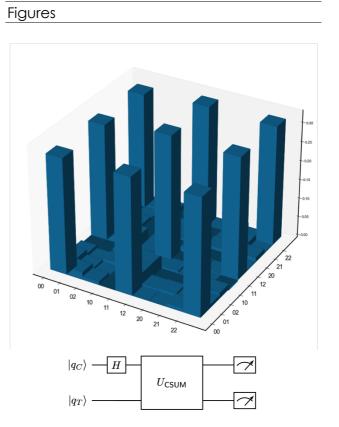
Qutrit Entanglement via the Differential AC Stark Shift

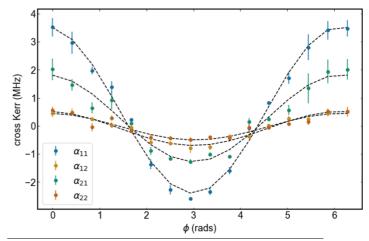
Noah Goss^{1,2}

Alexis Morvan², Bradley Mitchell^{1,2}, Brian Marinelli^{1,2}, Long Nguyen², Ravi Naik², Christian Juenger², Larry Chen¹, David Santiago², Irfan Siddiqi²

¹Quantum Nanoelectronics Laboratory, UC Berkeley


² Lawrence Berkeley National Laboratory

noahgoss@berkeley.edu


Ternary quantum information processing in circuit quantum electrodynamics devices poses a promising alternative to its more popular binary counterpart through larger computational spaces and proposed advantages in quantum simulation.¹ The weakly anharmonic nature of transmons² makes them ideal candidates for operation as autrits. Recent advancements in ternary auantum computing, such as autrit randomized benchmarking³ and quantum information scrambling on a gutrit device⁴, in have been key enabling autrit development and in demonstrating its value in quantum simulation. However, effectively engineering a flexible two gutrit entangling interaction remains a central challenge towards realizing the inherent scaling advantages of gutrits. In this work, we apply the differential AC Stark shift to implement a flexible, microwave activated, and tunable cross Kerr coupling between two fixed frequency transmon qutrits, expanding on similar work performed for a tunable ZZ interaction with transmon gubits⁵. We then leverage this tunable coupling to implement a scheme for an efficient and flexible high fidelity two qutrit C-Phase gate.

References

- [1] Wang et. al. Frontiers in Physics **8**, 589504 (2020)
- [2] J. Koch et al. Phys. Rev. A 76, 042319 (2007)
- [3] Morvan et al. Phys. Rev. Lett. **126**, 210504, (2021)
- [4] M. S. Blok et al. Phys. Rev. X 11, 021010 (2021)
- [5] Mitchell *et al.* Phys. Rev. Lett. **127**, 200502, (2021)

Figure 1: Experimentally reconstructed density matrix of 2 qutrit Bell State formed via our qutrit CZ gate. Our CSUM gate is performed via conjugating our qutrit CZ gate with single qutrit Hadamard gates.

Figure 2: We demonstrate the tunable nature of our microwave activated coupling by sweeping the relative phase of our differential AC Stark drive and fitting the cross Kerr parameters to our Hamiltonian model.

QUANTUMatter2022