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Deterministic sources of multi-photon entanglement are essential for several quantum 
technologies including measurement-based quantum computing [1] and all-photonic 
quantum repeaters [2]. Solid state quantum dots (QDs) are an attractive platform for realizing 
such sources due to their excellent optical properties, the ability to host a single optically 
active spin qubit, and the possible integration into nanophotonic devices [3]. Here we 
demonstrate a new path towards on-demand Greenberger-Horne-Zeilinger and linear cluster 
states using a self-assembled InAs QD embedded in a photonic crystal waveguide (PCW).  
By combining the waveguide’s polarisation selective Purcell enhancement [4] with all-optical 
spin control (Fig. 1(a-b)), we perform the first demonstration of entanglement between a QD 
hole-spin and a time-bin photon using the protocol in Fig. 1c. Using a novel self-stabilizing 
interferometer, we measure a 67.8% spin-photon Bell state fidelity (Fig. 1(d-e)), a 95.7% 
photon Hong-Ou-Mandel visibility, and a 124 Hz coincidence rate in great excess of 
comparable experiments with nitrogen-vacancy centres. Based on a thorough theoretical 
analysis and numerical simulations, we provide a path towards efficient entanglement 
sources capable of generating long streams of photons emitted at 10s of MHz and with 
photon indistinguishability suitable for achieving high fidelity fusion gates. 
 

 

Fig. 1 (a) Positively charged QD energy level diagram. A cycling transition (red arrow) is used to emit 
the time-bin photon and perform spin initialization/readout, and a Raman laser coherently couples the 

ground state spins. (b) SEM picture of the PCW which selectively enhances the y-polarised optical 
dipole and provides efficient photon collection. (c) Experimental pulse sequence for Bell state 
generation. Ø denotes photon vacuum, and e and l denote an early or late photon emission, 

respectively. (d) Spin-photon correlations measured in the ZZ basis. (e) Spin-photon correlations 
measured in the rotated basis using a time-bin interferometer. 
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