Spin-active color centers in silicon carbide for telecom-compatible quantum devices

Carmem M. Gilardoni¹

Tom Bosma¹, Freddie Hendriks¹, Irina Ion¹, Joop Hendriks¹, Danny van Hien¹, Bjorn Magnusson², Alexandre Ellison², Ivan G. Ivanov³, Jawad Ul-Hasan², N. T. Son³, Michael Trupke⁴, Caspar van der Wal¹

1 University of Groningen, Groningen, the Netherlands

2 Norstel AB, Norrkoping, Sweden

- 3 Linkoping University, Linkoping, Sweden
- 4 Universitat Wien, Vienna, Austria

c.maia.gilardoni@rug.nl

Optically-active impurities with spin in crystals can realize light-matter entanglement protocols necessarv for quantum-communication and sensina applications. transition-metal Various defects in SiC are unique in that they are emitters directly at telecom strong wavelenath in an industrially-mature semiconductor. They have in common that a single electron of d-orbital origin is responsible for their electronic behaviour [1,2,3,4]. We carried out a comprehensive research line on the Mo and V defect, and report our insights into how strong spin-orbit coupling, the symmetries in SiC, and the highly anisotropic hyperfine couplina together give new and unexpected spin states and dynamics, with favourable properties for quantum technologies. We found experimentally and theoretically that spin-orbit coupling stabilizes the defect spin, leading to seconds-long spin-relaxation times and limited possibilities for microwave spin control [2]. We found, however, that strong electronic spin driving is still possible, both with magnetic and electric-microwave fields, for systems with hyperfine coupling to a central nuclear spin [3]. Our results help in understanding how macroscopic figures of merit relevant for quantum operation are related to the microscopic configuration of defect centers, and may lead to engineerina of defects for specific

applications. We found that these insights are also relevant for spin behaviour in a broader class of materials.

References

T. Bosma et al., npj Quantum Information
(2018) 48
G. Wolfowicz et al., Scientific Advances

6, (2020) eaaz1192

[3] C. Gilardoni *et al.*, New Journal of Physics **22**, (2020) 103051

[4] C. Gilardoni *et al.*, New Journal of

Physics 23, (2021) 083010

Figure 1: (a) A transition metal defect in SiC is formed as the transition metal impurity substitutes a Si in the SiC lattice. (b) Temperature dependence of the spinrelaxation rate of Mo defects in SiC, showing that for ensembles with zero nuclear spin, the spin-relaxation rate is above seconds at low temperatures despite the presence of strong spin-orbit coupling.