Use of SPAD arrays for quantum technology

Leonardo Gasparini¹

Andre Stefanov², Nicola Massari¹, Luca Parmesan¹, Nicolo Leone³, Stefano Azzini³, Lorenzo Pavesi³

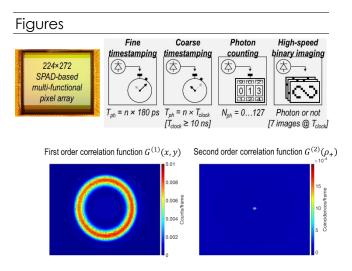
¹Fondazione Bruno Kessler, via Sommarive 18, Trento, Italy

²University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland

³University of Trento, via Sommarive 14, Trento, Italy

gasparini@fbk.eu

Thanks to their capability to detect single photons with good timing resolution, Single Photon Avalanche Diode (SPAD) can be considered as a good candidate for quantum experiments. In this work we present recent advances on the design of SPAD-based devices for quantum technology in two different projects.


The SuperTwin project [1] aimed to develop an all-solid-state super resolution microscope based on entangled photons. A quantum image sensor having a large degree of flexibility has been developed [2]. In the 60k-pixels array, each element pairs a SPAD with a reconfigurable logic block that can operate in one of the following modes: (i) photon timestamping with a fine (180 ps) or (ii) coarse (\geq 10 ns) resolution, (iii) photon counting, or (iv) high-speed binary imaging. The imager shows a high sensitivity (PDP up to 60%) and low noise (DCR of 100 Hz). Figure 1 shows the chip functionalities and first and second-order correlation the function of an SPDC source in the far field.

One of the goals of the Qrange project [3] is to develop tiny and low-cost quantum random number generator (QRNG) for IoT application. Differently from other approaches, mainly using an external source of light, we investigated on monolithic solutions [4]. The final design SPAD-based consists of а array of independent cells each integrating one central emitter and multiple detectors for random number extraction (see Figure 2). Different sources of light (Si-LED) have been also implemented. The typical bit rate generated by each cell is to few kbps. The device is now under test for validation.

We acknowledge the financial support from the European Commission through the SUPERTWIN project, ID 686731 and the Grant Agreement No. 820405 (project QRANGE).

References

- [1] https://supertwin.fbk.eu/home
- [2] https://www.imagesensors.org/Past%2
 0Workshops/2020%20ISSW/Leonardo%
 20Gasparini%20ISSW2020.pdf
- [3] https://qrange.eu/
- [4] F.Acerbi et al, J. of Selected Topics in Quantum Electronics 24 (2018): 1-7

Figure 1: Micrograph and concept of the Quantum imager (top). Acquisition of SPDC photons (bottom)

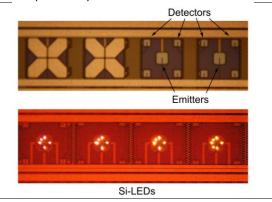


Figure 2: Implemented cell for random number generation and Si-LED.