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Machine learning (ML), which enables 

computers to learn automatically from 

available task-specific data, is reshaping 

modern approaches in physical sciences. In 

quantum science, ML is one of the most 

useful and powerful approaches in particle 

physics, many-body physics, and quantum 

computing among others. Recently 

developed learning architectures such as 

convolution neural networks (CNN), having 

a considerable success in object detection 

and image classification, were beneficial to 

classify phases of matter, study non-

equilibrium glasses, find hidden order in 

electronic-quantum-matter imaging data 

and identify the thermodynamic time arrow 

in quantum systems. 
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Figure 1: Schematic diagram (left) of supervised 

learning with two CNNs and working flow (right) 

of CNN. 

 

 

Disorder in condensed matter and atomic 

physics is responsible for a great variety of 

fascinating quantum effects [1,2]. Many of 

these effects, being still challenging for 

understanding, make highly demanded 

dynamical control of quantum disordered 

systems hard, which requires novel tools to 

tackle the relevant issue. Particularly, as the 

size of the stochastic sample increases 

dramatically, the higher power of ML is 

demanding in such complexity. 

 

To work out this problem, here we establish 

the ML approach for identifying and 

controlling dynamics of a quantum system 

with disorder. For this purpose, we use deep 

learning with two CNNs, see Fig. 1, for high-

fidelity control of a quantum particle in a 

time-varying trapping potential embedded 

in a random environment. 
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Figure 2: Performance of the accuracy in CNN1 

(a) and the fidelity deviation (b) are displayed 

for classification and regression, where the 

dashed and solid lines represent the test and 

training batch of database. The shadow area 

indicates the average of every batch. (c) The 

outputs from two trained CNNs (red crosses) 

compared with the numerical results (black 

circles) for 100 testing realizations of random 

potential. 

 

Consider a quantum particle, located at the 

sum of time-dependent harmonic potential 

and a random potential of impurities [3,4]. 

We show first an important result: training the 

CNN can efficiently preselect the relevant 

type of the disorder realization from tens of 

thousands of stochastic samples. Then, we 

introduce the second CNN to find the 
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optimal control policy such as the time-

dependent potential shape, in a training 

regression model, see Fig. 2. To make the 

optimization more efficient, the randomness 

classification from deep learning is an 

essential pretraining for disordered system 

under control, thus removing the redundant 

data. Thus, the supervised learning with 

CNNs provides the ability to generalize to 

tasks beyond their original design, 

applicable to any realization of random 

potential. 
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Figure 3: The average accuracy in CNN1 (a) 

and the average fidelity deviation in CNN2 (b) 

for the last ten epochs are illustrated for the 

different values of time and trap frequency, 

where the error bar represents their deviations. 

 

To illustrate the generality of proposed 

method, we apply different values of time 

and trap frequency to the trained CNNs. Fig. 

3 indicates the average accuracy in CNN1 

and the average fidelity deviation in CNN2 

for the last ten epochs by using the same 

structure and hyperparameter as before. On 

the one hand, when final trap frequency is 

increased, the random realizations are 

much easier to recognize, thus resulting in 

higher accuracy. It makes sense that the 

influence of random potentials on the 

fidelity can be negligible, when the trap 

potential is strong enough to localize the 

state near the origin. However, the more 

realizations as the inputs of CNN2 finally lead 

to the larger fidelity derivation as shown in 

Fig. 3. On the other hand, according to the 

time-energy trade-off, larger tf (still far away 

from the adiabaticity) increase the area 

corresponding to condition for input power.   

The fidelity deviation in CNN2 becomes 

larger because of worse classification, 

depending on the distribution and number 

of the selected realizations in CNN1, see Fig. 

3. In a word the combined effects of the 

trapping potential and disorder plays an 

important role in dynamical control, 

characterized by the fidelity and the 

required energy cost, e.g., the laser power 

for optical trap or the electrical power for 

quantum dots. 

In practice, impurities, noise, and other 

imperfections are ubiquitous and 

unavoidable in condensate matter physics 

and their simulated counterparts. Our 

methods pave an efficient way for the 

robust optimal control, i.e., cooling, 

transporting, trapping the neutral atoms 

[4,5] or charged particles (ions and 

electrons) [6], by taking into account 

environmental noise and randomness. 
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