

September 23-24, 2020

Nanoscience and Nanotechnology International Conference

A CIRCULAR MODEL FOR ELECTRON CONFIGURATIONS IN 2D HETEROSTRUCTURES AT HIGH MAGNETIC FIELD

Antonio Puente¹, R.G. Nazmitdinov², M. Cerkaski³, M. Pons¹

¹Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain ²Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia ³Department of Theory of Structure of Matter, Institute of Nuclear Physics PAN, 31–342 Cracow, Poland

Motivation

$$H = \sum_{i} \left(\frac{p^{2}}{2m} + \frac{1}{2} m \Omega^{2} r^{2} + \frac{\omega_{c}}{2} \hat{L}_{z} + g^{*} \mu_{B} B S_{z} \right)_{i} + \frac{e^{2}}{\kappa} \sum_{i < j} \frac{1}{r_{ij}} \qquad \Omega = \sqrt{\omega_{0}^{2} + (\omega_{c}/2)^{2}}$$

Two relevant parameters (interaction – confinement) and magnetic – confinement ratios

Theoretical studies of electronic wave functions in the plane $\overline{\Omega} - R_{\rm w}$

GS configuration \implies minimize wrt p, n, r

• Far fewer variables than in Molecular Dynamics (MD) • Unique solution (*r*) for a given partition *p*, *n* • Easier scan of shell structure for increasing N

It can be shown (cyclic symmetry)

$$E_n(r) = \alpha \frac{n S_n}{4 r} \quad \text{with} \quad S_n = \sum_{k=1}^{n-1} \frac{1}{\sin \frac{k \pi}{n}}$$
$$E_{n_i n_j}(r_i, r_j, \psi) = \alpha G \sum_{k=1}^{L} \epsilon(r_i, r_j, \psi_k + \psi)$$

with $G = GCD(n_i, n_j), \ L = lcm(n_i, n_j)$ and $\epsilon(r_i, r_j, \theta) = (r_i^2 + r_j^2 - 2r_i r_j \cos \theta)^{-1/2}$

Ring-Ring interaction is an even periodic $(2\pi/L)$ function

Results for Hard (infinite wall) and Soft (harmonic) confinement

Circular Model (CM)

N that open new Shell (particle at center in CM) Hard confinement

3.

N	CM configuration	Energy	MD configuration	Energy			
12	[11,1]	59.57568	[11,1]	59.57568			
30	[23,6,1]	479.0854	[23,6,1]	479.0796			
56	[37,12,6,1]	1862.734	[37,12,6,1]	1862.650			
92	[53,20,12,6,1]	5358.578	[53,20,12,6,1]	5358.353			
136	[70,28,19,12,6,1]	12181.755	[70,28,19,12,6,1]	12181.345			
187	[87,37,26,18,12,6,1]	23652.947	[87,37,26,18,12,6,1]	23652.188			
248	[106,46,34,25,18,12,6,1]	42447.440	[107,46,34,25,17,12,6,1]	42446.278			
317	[126,55,42,32,25,18,12,6,1]	70418.854	[126,56,42,33,22,19,12,6,1]	70416.883			
395	[147,65,50,40,32,24,18,12,6,1]	110667.59	[147,66,51,40,26,26,19,13,6,1]	110664.44			
; length and energy units (Hard conf): R (Disk radius), $e_0 \equiv \frac{e^2 / \kappa}{R}$							

Examples for Soft confinement

N	CM configuration	Energy	MD configuration	Energy
6	[5,1]	9.280127	[5,1]	9.280127
16	[10,5,1]	84.49102	[10,5,1]	84.44850
33	[15,11,6,1]	306.9034	[15,11,6,1]	306,8574
53	[19,16,11,6,1]	701.8207	[18,17,11,6,1]	701.7045
80	[24,21,17,11,6,1]	1429.075	[22,22,17,12,6,1]	1428.827
112	[28,26,22,17,12,6,1]	2545.141	[27,27,21,18,12,6,1]	2544.754
149	[32,31,27,23,17,12,6,1]	4143.661	[31,31,26,24,18,12,6,1]	4143.077
187	[37,36,32,27,22,17,11,5]	6099.538	[34,34,34,24,24,18,12,6,1]	6098.766
191	[36,36,32,28,23,17,12,6,1]	6322.955	[34,34,34,28,24,18,12,6,1]	6322.128

; length and energy units (Soft conf): $R = R_{\rm w}^{1/3} \ell_0$ and $e_0 \equiv R_{\rm w}^{2/3} \hbar \omega_0$

Universal solutions (everything scales with corresponding units)

Energy = Zero point + Classical Energy ($\{R_i\}$ **) + corrections**

At high enough magnetic fields, zero point dominates system's energy and the individual electrons "localize" (sharp intrinsic probability distributions) around the classical equilibrium positions

• As N increases the number of rings does too, progresively changing the internal occupation from 1 to 5 and back again to 1 with an additional ring • For big N internal shells develop a hexagonal lattice, which gradually transform to a well defined circular ring structure approaching the boundary

Clustering algorithm in MD: how good is the Circular Model?

• Fits from systematic CM results provide good estimates

for number of rings and external Shells fillings

 $n_1^H = [2.795 N^{2/3} - 3.184] \quad n_2^H = [1.351 N^{2/3} - 6.566]$ $n_1^{s} = \left[0.2423 \, N^{2/3} + 6.229 \, N^{1/3} - 6.375 \right]$

The CM (rings) and MD results (dots) for N = 187 particles confined in disk (left) or harmonic (right) potentials. The core (green) region with {**1**,**6**,**12**,**18**,(**24**)} particles exhibits a clear hexagonal pattern. The external valence shells show an almost perfect circular structure.

Quenched Molecular Dynamics (exact classical configurations)

4

How to define MD partitions? – Group particles in Rings

$$r_1 \le r_2 \le \dots \le r_N \to \delta_i = r_{i+1} - r_i$$
 and sort: $\delta_{i_1} \ge \delta_{i_2} \ge \dots \ge \delta_{i_{N-1}}$

Maximize average radial
separation between groups
$$F_{\text{MD}}(p) = \frac{r_1 + \sum_{k=1}^{p-1} \delta_{i_k}}{p}$$

additionally

• impose $0 \le p(N) - p(N - 1) \le 1$

• detect new particle at center $r_1 \approx 0$ (new shell)

Results of the clustering algorithm applied to two MD ground state configurations for harmonic confinement. The obtained MD (CM) ring structures are [23,20,15,9,3] (same) for N=70 and [21,21,15,10,4] ([23,20,15,9,4]) for N=71.

5.

With optimal *p*, define measure (proximity to Ring structure)

 $R_{\rm MD}(N) = \frac{p F_{\rm MD}(p)}{r} \le \left(1\right)$ Perfect rings (as in CM)

• Remarkable description for hard confinement $(n_1^H(N) \gg n_1^S(N))$ • Not so accurate for harmonic trap, but still • Very reasonable model of self-organization in finite 2D

CONTACT PERSON

Antonio Puente email: toni.puente@uib.es 1. M. Cerkaski, R. G. Nazmitdinov, and A. Puente, Phys. Rev. E 91 (2015) 032312

2. R. G. Nazmitdinov, A. Puente, M. Cerkaski and A. Pons, Phys. Rev. E 95 (2017) 042603

CONFERENCE ONLINE

September 23-24, 2020