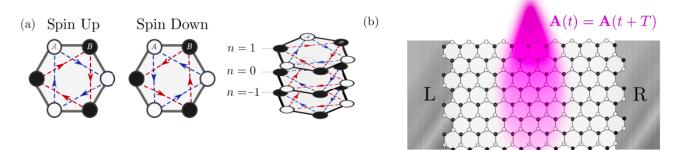
Spin-polarized tunable photocurrents

Esteban A. Rodríguez-Mena¹

Matías Berdakin², Luis E. F. Foa Torres¹ ¹Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago Chile, ²INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina. estebanarodriguezm@gmail.com

Circular dichroism, a distinct response to left and right-handed circularly polarized light, is an example of a phenomenon involving light-matter interaction that has been heavily exploited to control valley polarization in two-dimensional materials [1]. In most studies, light-matter interaction enters perturbatively and does not modify the electronic properties. But beyond this weak-coupling regime, Floquet-engineering [2-4] has shown that we can use light to change the band-structure of a material [5-7] and even its topology [2-4, 8], generating a Hall response [9].


Light can also be used to generate directed currents even in the absence of an applied bias voltage, a phenomenon called quantum pumping, and recently it has been shown that by tailoring a selective environment one can take this to the limit of a perfect isolator effect [10], where currents flow in one direction but not the opposite.

Here, we go a step further and show how the rich interplay between electron-photon processes (and the additional synthetic dimension), stacking order, spin-orbit coupling, and the topology of a two-dimensional material can be harnessed to control spin, charge, and valley currents in two-dimensional materials, beyond the weak-coupling regime [11].

REFERENCES

- [1] K. F. Mak, K. He, Jie Shan, and T. F. Heinz, Nature Nanotechnology, 7 (2012) 494.
- [2] T. Oka, and A. Aoki, Physical Review B 79 (2009) 081406.
- [3] N. H. Lindner, G. Refael, and V. Galitski, Nature Physics 7 (2011) 490.
- [4] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Physical Review B 84 (2011) 235108.
- [5] H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. Foa Torres, Applied Physics Letters 98 (2011) 232103.
- [6] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Science 342 (2013) 453.
- [7] F. Mahmood et al. Nature Physics 12 (2016) 306.
- [8] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and G. Usaj, Physical Review Letters 113 (2014) 266801.
- [9] J.W. McIver et al., Nature Physics 16 (2020) 38.
- [10] V. Dal Lago, E. Suárez Morell, and L. E. F. Foa Torres, Physical Review B 96 (2017), 235309.
- [11] M. Berdakin, E. Rodriguez-Mena, and L. E. F. Foa Torres, Nano Lett. 21 (2021), 3177.

FIGURES

Figure 1: Under the light spot, the system develops the replica scheme unfolding itself into several copies which represent photon dressed processes (a, right). In (b) a schematic representation of the device we will consider in the transport setup. Under particular conditions, the transport of one spin might be suppressed while the remaining is perfectly unaffected.

GRAPHENE2021 VIRTUAL CONFERENCE