Twist angle dependent proximity-induced spin-orbit coupling in graphene/WSe₂ heterostructures

Tobias Rockinger¹

Kenji Watanabe², Takashi Taniguchi³, Dieter Weiss¹, Jonathan Eroms¹

Institut für Experimentelle und Angewandte Physik, Universität Regensburg, DE-93040 Regensburg, Germany

²Research Center for Functional Materials, National Institute for Materials Science,

1-1 Namiki, Tsukuba 305-0044, Japan

³International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

tobias.rockinger@physik.uni-regensburg.de

In recent years, effects of strong proximity-induced spin-orbit coupling (SOC) in single layer graphene (SLG) on transition metal dichalcogenides (TMDCs) like WSe₂ have been detected [1]. Additionally, theoretical calculations predicted a strong dependence of the proximityinduced SOC in relation to the twist angle between graphene and TMDCs [2, 3]. In our work, we fabricated SLG/WSe₂/h-BN heterostructures with defined twist angles between SLG and WSe₂ layers. The fact that 2D materials like graphene and WSe₂ very often break along zigzag or armchair edges was used to align and estimate the rotation angles between the flakes [4]. Since we cannot distinguish between zigzag or armchair edges we consider both cases. Strong SOC causes weak anti-localization [1], which we used to determine the strength of the Rasbha type SOC (λ_R) and the valley-Zeeman type SOC (λ_{VZ}). We found a strong twist angle dependence of the proximity-induced SOC. A sample with an angle around 15° shows a much stronger SOC in both cases, for λ_R as well as for λ_{VZ} , compared to the other samples, with twist angles different to 15°. For those samples with a twist angle near 0° or 30° (zigzagarmchair problem), we found the SOC parameter to be almost equal and much smaller compared to the sample with 15° twist. This is in qualitative agreement with theoretical predictions [2, 3].

References

- [1] Z. Wang et al, Phys. Rev. X 6, (2016) 041020
- [2] Y. Li and M. Koshino, Phys. Rev. B 99, (2019) 075438
- [3] A. David et al, Phys. Rev. B **100**, (2019) 085412
- [4] Y. Guo et al, ACS Nano **10**, (2016) 8980

Figures

Figure 1: Weak anti-localization effect measured for three different with different twist angles (left). Comparison of λ_R (center) and λ_{VZ} (right) for three different samples with different twist angles.