

Insights into Adsorption of Linear, Monobranched, and Dibranched Alkanes on Pure Silica STW Zeolite as a Promising Material for Their Separation

<u>Eduardo Pérez-Botella</u>, Alechania Misturini, Andrés Sala, Miguel Palomino, Avelino Corma, German Sastre, Susana Valencia, and Fernando Rey

Outline

- Introduction
 - Gasoline
 - Zeolites
 - Adsorptive separation of hydrocarbons
- Objectives
- Methods
- Results and discussion
- Conclusions

- C4 C12 (contains 4 to 12 carbon atoms)
- Octane number (ON) ≈100
- branched
- unsaturated
- aromatics

• Hydroisomerization of straight run naphta

linear \rightarrow multibranched + monobranched + linear

- C4 C12 (contains 4 to 12 carbon atoms)
- Octane number (ON) ≈100
- Hydroisomerization of straight run naphta

linear \rightarrow multibranched + monobranched + linear

branched

•

- C4 C12 (contains 4 to 12 carbon atoms)
- Octane number (ON) ≈100
- branched
 unsaturated
- aromatics

• Hydroisomerization of straight run naphta

→ linear → multibranched + monobranched + linear

- C4 C12 (contains 4 to 12 carbon atoms)
- Octane number (ON) ≈100
- branched
 unsaturated
- aromatics

• Hydroisomerization of straight run naphta

 $\rightarrow \text{ linear } \rightarrow \text{ multibranched + monobranched + linear}$

npentane, n-C5 RON = 61.8, MON = 63.2

2-methylbutane, 2MB RON = 93.0, MON = 89.7

2,2-dimethylpropane, 22DMPr RON = 85.5, MON = 80.2

n-hexane, nC6 RON = 24.8, MON = 26.0

2-methylpentane, 2MPe RON = 73.4, MON = 73.5

2,2-dimethylbutane, 22DMB RON = 91.8, MON = 93.4 2,3-dimethylbutane, 23DMB RON = 104.3, MON = 94.2

.

n-heptane, nC7

RON = 0, MON = 0

3-methylhexane, 3MH RON = 52.0, MON = 55.0

2,3-dimethylpentane, 23DMPe RON = 91.1, MON = 88.5 2,4-dimethylpentane, 24DMPe RON = 83.1, MON = 83.8

Introduction: Adsorptive separation of hydrocarbons using zeolites

• Zeolite 5A (LTA) \rightarrow separation of linear from branched

• Zeolites ZSM-5, silicalite-1 (MFI) and others \rightarrow separation of mono- and multibranched

We propose a different adsorbent, i.e. Si-STW

Objectives

- Adsorption of C5-C7 hydrocarbons on Si-STW
 - Thermodynamics
 - Kinetics
- Comparison with Si-MFI
- Experimental and computational work

J. Phys. Chem. C 2020, 124, 49, 26821–26829

Methods

- Adsorption isotherms 10-60 °C and kinetics 25 °C, vapor phase
 - C5, 300 mbar
 - C6, 150 mbar
 - C7, 50 mbar

CBMC simulations → adsorption isotherms, enthalpy of adsorption

MD simulations → mean square displacement

*thermodynamics *kinetics

Results and Discussion

Adsorption Isotherms

12

Adsorption Kinetics in Si-STW

1000

0000 100000

60

40

20

-20

-40

Kinetic Selectivity in Si-STW and Si-MFI

Si-STW

	Compounds	Kinetic selectivity at higher pressure
C5	nC5/22DMPr	135
	2MB/22DMPr	88
	nC6/22DMB	586
C6	2MP/22DMB	759
	23DMB/22DMB	328
	nC7/23DMPe	567
C7	3MH/23DMPe	600
	24DMPe/23DMPe	600

Si-MFI large crystals

Compounds	Kinetic selectivity at	
nC5/22DMPr	78	
2MB/22DMPr	36	

Si-MFI small crystals

Compounds	Kinetic selectivity at 300 mbar
nC5/22DMPr	43
2MB/22DMPr	41

Conclusions

• Si-STW:

linear ≈ monobranched > n,m-dibranched >> n,n-dibranched

- Si-STW presents similar thermodynamic selectivities and superior kinetic selectivities to Si-MFI, as well as a larger adsorption capacity
- Further work: dynamic mixture experiments, improving CBMC force field

Acknowledgements

- Spanish Ministry of Sciences, Innovation and Universities (MCIU), State Research Agency (AEI), and the European Fund for Regional Development (FEDER) for their funding via project RTI2018-101784-B-I00 and Program Severo Ochoa SEV-2016-0683.
- A.S. thanks the MCIU for his grant BES-2016-078684
- E.P.B. thanks the MCIU for his grant (FPU15/01602)
- A.M. thanks the Generalitat Valenciana for a predoctoral fellowship GRISOLIAP/2019/084
- A.M. and G.S. thank ASIC-UPV for the computational facilities
- The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization

Thanks for your attention!

Any questions?

Si-STW

ample	BET surface area (m²/g)	Micropore volume (cm³/g)	Average pore size (Å)	Approximate crystal size (μm)
i-STW	630	0.24	5.3	0.5 - 5
i-MFI_large	386	0.17	5.1	5 - 100
i_MFI_small	451	0.18	5.1	0.5

18

Isosteric Heat of Adsorption*

* negative value of the enthalpy of adsorption

High heats of adsorption in both materials, increasing with chain length

Si-MFI

Mismatch between Exp and Sim in Si-STW, especially for branched isomers

^a J. Phys. Chem. B 1998, 102, 4588-4597 ^b Adsorption (2007) 13: 105–114

Adsorption Kinetics of C5 in Si-MFI

"High" pressure, 300 mbar

• Similar qualitative observations to Si-STW