

Design of magneto-plasmonic heterostructures formed by Au decorated on magnetic Prussian Blue-type nanocrystals

Roger Sanchis Gual

Instituto de Ciencia Molecular

Small Chem 2021 Online International Conference

17/02/2021

Prussian Blue Analogue (PBA)

A_aM_b[M′(CN)₆]_c⋅nH₂O

M^{II} and M^{III} = transition metal A = alkali cation

- Chemical versatility
- Tunability of the properties
- Optical transparency
- Charge transfer properties
- Magnetic properties

Prussian Blue Analogue (PBA)

A_aM_b[M'(CN)₆]_c·nH₂O

M^{II} and M^{III} = transition metal A = alkali cation

- Chemical versatility
- Tunability of the properties
- Optical transparency
- Charge transfer properties
- Magnetic properties

Main problem

Magneto-optics are based on the interaction between the light and magnetically ordered materials

Magneto-optical effects are usually weak

Magneto-plasmonics

Magneto-plasmonics

2

Magneto-plasmonic materials are heterostructures where ferromagnetic and plasmonic structures are combined in a unique entity

ACS Appl. Mater. Interfaces 2013, 5, 1955–1960

Au-PBA heterostructures

Chem. Eur. J. 2017, 23, 7483 – 7496

Anal. Chem. 2017, 89, 1551–1557

5

Higher interaction with the amino group

The magnetic properties of the hybrid are almost identical to those measured for pristine NiCr PBA NPs

Plasmonic properties

Plasmon

shift

Modification of the local refractive index at the surface of the Au NPs

Synthesis versatility

It is possible to tune the plasmonic properties of the hybrids in the whole visible spectrum

Synthesis versatility

Synthesis versatility

- This synthetic procedure permits to prepare hybrid magneto-plasmonic nanostructures formed by metallic NPs decorating PBA.
- We can control the location of the metallic NPs on the PBA: randomly over the whole cubic surface or preferentially on the edges.
- It is possible to anchor anisotropic metallic NPs allowing to tune the optical properties in a wide range of the visible spectrum.
- It provides a versatile platform to investigate the enhancement of the magneto-optical properties thanks to the coupling with the plasmons.

"The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles" *Chem. Comm.* **2021**

University of Valencia

Isidora Susic

Ramón Torres-Cavanillas

Dr. Marc Coronado-Puchau

Prof. Eugenio Coronado

University of Antwerp

Dr. Daniel Arenas-Esteban

Prof. Sara Bals

Universitey of Paris-Saclay

Prof. Talal Mallah

Thanks for your attention!

EXCELENCIA MARÍA DE MAEZTU

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Design of magneto-plasmonic heterostructures formed by Au decorated on magnetic Prussian Blue-type nanocrystals

Roger Sanchis Gual

Instituto de Ciencia Molecular

Small Chem 2021 Online International Conference

17/02/2021

Supporting: AuNRs decoration

Supporting: Au decoration

Supporting: Au/PBA molar ratio

Stability characterization

Aggregation of the heterostructure occurs with time