

Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition

Yuan Fang (Soochow University) 6th Nov 2020

Cross-linking of polymers

Formulation of adhesives

Reversible

[2+2]

Self-healing plastics

Reversible Diels-Alder reaction used for the crack healing mechanism

before

after heating

Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F., *Science* **2002**, *295*, 1698-1702

Cycloaddition reactions of olefin containing polymers are of particular interest because of their reversibility, which creates new opportunities for self-healing plastics and dynamic materials.

Cross-linking in ordered manner

Topological reaction = the order of the precursor defines the structure of the (crosslinked) product.

1,4-addition polymerization of diacetylenes

Signature **solid-state topological reaction** that can produce single crystals of poly(diacetylene) upon irradiation of monomer crystals

Coordination Polymers and Metal Organic Frameworks (MOFs)

Polymerization in a single-crystal-to-single-crystal manner via [2 + 2] cycloaddition

3

1) Enkelmann, V.; Leyrer, R. J.; Schleier, G.; Wegner, G. J. Mater. Sci. 1980, 15, 168. 2) Medishetty, R.; Koh, L. L.; Kole, G. K.; Vittal, J. J. Angew. Chem., Int. Ed. 2011, 50, 10949.

Covalent Organic Frameworks (COFs)

- Recent discovery of graphene has caused a surge of interest in the research and development of 2D materials
- Covalent organic frameworks (COFs) have been rapidly developed
- A class of <u>crystalline</u> <u>porous</u> <u>organic</u> polymers with predesigned skeletons, permanent porosity and highly ordered structures
- Potentials for a wide variety of applications, including energy conversion and storage, gas storage, separation, etc.

Qi, H.; Sahabudeen, H.; Liang, B.; Polozij, M.; Addicoat, M. A.; Gorelik, T. E.; Hambsch, M.; Mundszinger, M.; Park, S.; Lotsch, B. V.; Mannsfeld, S. C. B.; Zheng, Z.; Dong, R.; Heine, T.; Feng, X.; Kaiser, U., *Sci Adv* **2020**, *6*, eabb5976.

Two-dimensional sp² π –conjugated covalent organic frameworks

Jadhav, T.; Fang, Y.; Patterson, W.; Liu, C.-H.; Hamzehpoor, E.; Perepichka, D. F., Angew. Chem., Int. Ed. 2019, 58, 13753 5

Two-dimensional sp² π –conjugated covalent organic frameworks

Jadhav, T.; Fang, Y.; Patterson, W.; Liu, C.-H.; Hamzehpoor, E.; Perepichka, D. F., Angew. Chem., Int. Ed. 2019, 58, 13753 6

[2 + 2] photocycloaddition of 2D poly(arylene vinylene)

P²PV = SP² phenylenevinylene COF **P³PcB** = SP³ phenylene cyclobutylene COF

[2 + 2] cyclization of the adjacent vinylene bonds

Jadhav, T.;* Fang, Y.;* Liu, C.-H.;* Dadvand, A.; Hamzehpoor, E.; Patterson, W.; Jonderian, A.; Stein, R. S.; Perepichka, D. F.,* JACS. 2020, 142, 8862

Solvent effect on the topological reaction

0.35 nm

0.49 nm

Jadhav, T.;* Fang, Y.;* Liu, C.-H.;* Dadvand, A.; Hamzehpoor, E.; Patterson, W.; Jonderian, A.; Stein, R. S.; Perepichka, D. F.,* JACS. 2020, 142, 8862

Crystalline to crystalline cycloreversion

Acharjya, A.; Pachfule, P.; Roeser, J.; Schmitt, F.-J.; Thomas, A., *Angew. Chem., Int. Ed.* **2019,** *58*, 14865

Amorphous products or low crystalline

Although [2 + 2] cyclization reactions are well established, the solid-state cleavage of the cyclobutane ring **preserving the crystallinity** is relatively rare

Jadhav, T.;* Fang, Y.;* Liu, C.-H.;* Dadvand, A.; Hamzehpoor, E.; Patterson, W.; Jonderian, A.; Stein, R. S.; Perepichka, D. F.,* JACS. 2020, 142, 8862

Concentrated H₂SO₄ exfoliation of COFs

Crystalline 3D structure of this crosslinked COF

between 2D and 3D

To prove its generality

Jadhav, T.;[‡] Fang, Y.;[‡] Liu, C.-H.;[‡] Dadvand, A.; Hamzehpoor, E.; Patterson, W.; Jonderian, A.; Stein, R. S.; Perepichka, D. F.* JACS 2020, 142, 8862

- So effectively We found a way to transform in between a 2D COF and a 3D COF
- Achieved these transformations while preserving the crystallinity

12

Acknowledgments

Supervisors

Prof. Dmitrii Perepichka

Dr. Thaksen Jadhav Cheng-Hao Liu Dr. Afshin Dadvand Ehsan Hamzehpoor William Patterson Antranik Jonderian Dr. Robin S. Stein

Everyone in the lab

Thank you so much for listening!

Fonds de recherche sur la nature et les technologies Québec 🏼 🏘

