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Background

A novel family of layered materials from group-15 of the Periodic Table, called Pnictogens (P, As, Sb and Bi) have gained increasing attention due to their semiconducting
behavior, with thickness-dependent band gaps that can be modulated by strain, doping, or chemical functionalization, which can be useful for fabricating optoelectronic
devices. Additionally, these 2D-Pnictogens offer unique photonic, catalytic, magnetic, and electronic properties. [1] Within this chemical group, black phosphorous shows
bandgap thickness-dependency but its use is hampered because of its high reactivity with ambient water and oxygen. Alternatively, antimonene, another 2D-Pnictogen,
seems to be an excellent candidate exhibiting interesting theoretically-predicted properties. However, only a few of them have already been experimentally demonstrated,
while many others remain a challenge due to the absence of a suitable synthetic method to produce the required high-quality material. [2] Antimonene can be isolated
using top-down and bottom-up approaches. On the one hand, top-down methods such as micromechanical exfoliation has demonstrated the ability to give rise antimonene
monolayers with limited lateral dimensions and poor yields. Another physical method, base on liquid-phase exfoliation, has been demonstrated the ability to produce non-
well-defined and partially oxidized hexagonal antimonene nanoflakes. [3] On the other hand, bottom-up methods based on sublimation and on-surface deposition, as well
as molecular beam and van der Waals epitaxy approaches, have been developed to provide high-quality antimonene flakes but are not suitable for large-scale synthesis. [4]
Along this front, another bottom-up approach has been recently reported, involving a solution-phase synthesis of well-defined hexagonal few-layer antimonene via
anisotropic growth. [5] Nevertheless, this colloidal approach is limited to a batch-to-batch synthesis and low yields.

Motivation

Optimization of the synthetic parameters of the colloidal synthesis of few-layer antimonene hexagons and up-scaling of this process using a continuous-flow synthesis (CFS) 
that allow the production of large quantities of high-quality antimonene flakes to pave the way for their incorporation in optoelectronic devices.

Results and Discussion
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Optimized Batch-to-Batch Synthesis Continuous-Flow Synthesis

In the continuous synthesis, we do not use the hot injection method, but instead, the precursor
and reaction medium are mixed at 30 °C before introducing the mixture in the reactor. This
modification directly affects the reaction temperature, which decreases from 300 °C used in
the hot injection method to 250 °C .
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Yield Comparison batch-to-batch vs. CFS
CFS gives rise to a maximum yield closes to 18 %, at 11 mL·min-1, which is 

significantly higher than the best yield obtained with the batch method (12 %).

AFM picture (left) and Raman (right) picture of a pure and thin Sb hexagonal
nanosheet obtained by batch-to-batch synthesis.

AFM picture (left) and Raman (right) picture of a pure and thin Sb hexagonal
nanosheet obtained by continuous-flow synthesis.


