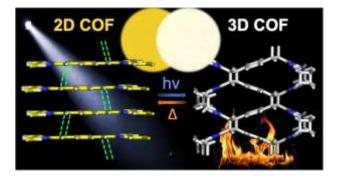
Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition


Yuan Fang

Thaksen Jadhav, Cheng-Hao Liu, Afshin Dadvand, Ehsan Hamzehpoor, William Patterson, Antranik Jonderian, Robin S. Stein, and Dmitrii F. Perepichka *McGill University, Montreal, Quebec H3A 0B8, Canada Soochow University, Suzhou, 215123, China* Silvermoon2000@hotmail.com

Abstract

We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2 + 2] cycloaddition cross-linking of the π -stacked layers in 3D COFs. The reaction is reversible, and heating to 200°C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blueshifted UV-vis absorption, altered luminescence, modified band structure, and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant room-temperature ion conductivity of 1.8×10^{-4} S/cm and 3.5×10^{-5} S/cm, respectively. Even higher room-temperature proton conductivity of 1.7×10^{-2} S/cm and 2.2×10^{-3} S/cm was found for H₂SO₄-treated 2D and 3D COFs, respectively.

FIGURES

