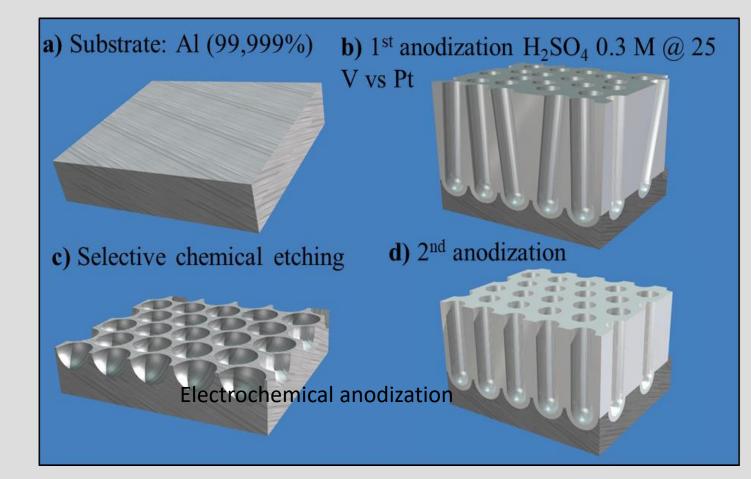


Optical Characterization of Nanoporous Alumina-based Structures Modified by ALD Technique

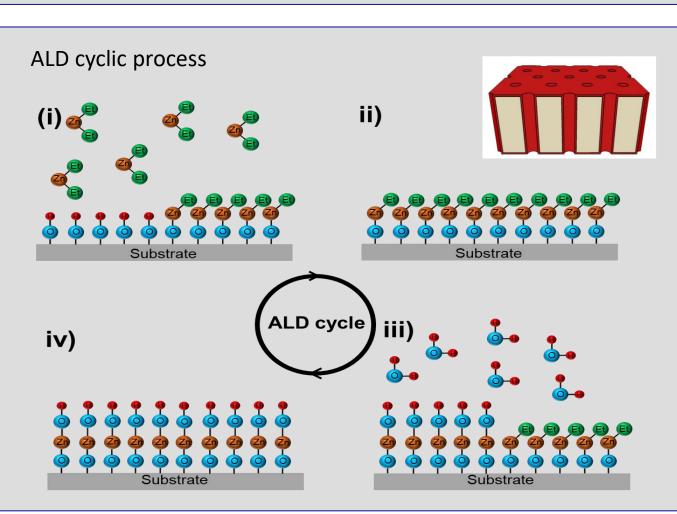
J. Benavente¹, A.L. Cuevas², V. Vega³, M^a.V. Martínez de Yuso⁴, A.S. González⁵, V.M. Prida⁵. 1) Departamento de Física Aplicada I. Falcultad de Ciencias. Universidad de Málaga. E-29071 Málaga. Spain 2) Unidad de Nanotecnología, SCBI Centro, Universidad de Málaga, E-29071 Málaga, Spain 3) Laboratorio de Membranas Nanoporosas. Universidad de Oviedo, E-33006 Oviedo, Spain 4) Servicios Centrales de Investigación, Universidad de Málaga, E-29071 Málaga, Spain 5) Departamento de Física, Facultad de Ciencias, Universidad de Oviedo, E-33007 Oviedo, Spain

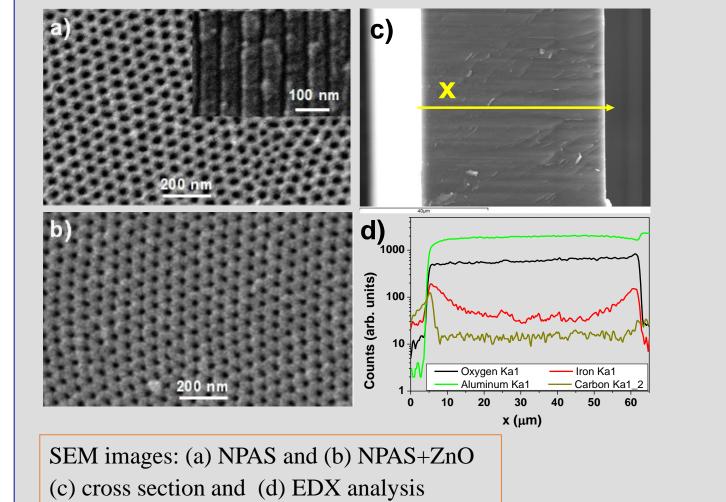


Universidad de Oviedo

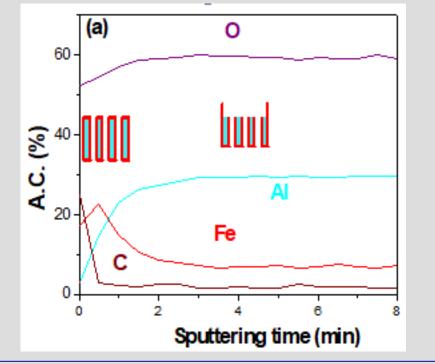
Nanoporous alumina structures (NPASs) obtained by the two-step anodization method exhibit well-defined morphology (parallel array of straight cylindrical nano-channels without practically pore radii dispersion), high surface area and aspect ratio, being of interest in nanotechnology (nano-templates, drug delivery, nanofilters, photonic crystals,...). Moreover, the possibility of easy surface material and pore radii walls modification by a well-established technique such as atomic layer deposition (ALD) makes of these new nanoporous alumina-based structures (NPA-bSs) excellent platforms for other applications (chemical, biological or optical sensors). In this work, we study optical changes in a NPAS as a result of its coverage by a layer of a metal oxide by ALD technique (NPAS+X samples). Different metal oxides ($X = Al_2O_3$, TiO₂, Fe₂O₃ or ZnO) were used as coating layer of these new nanoporous alumina-based structures

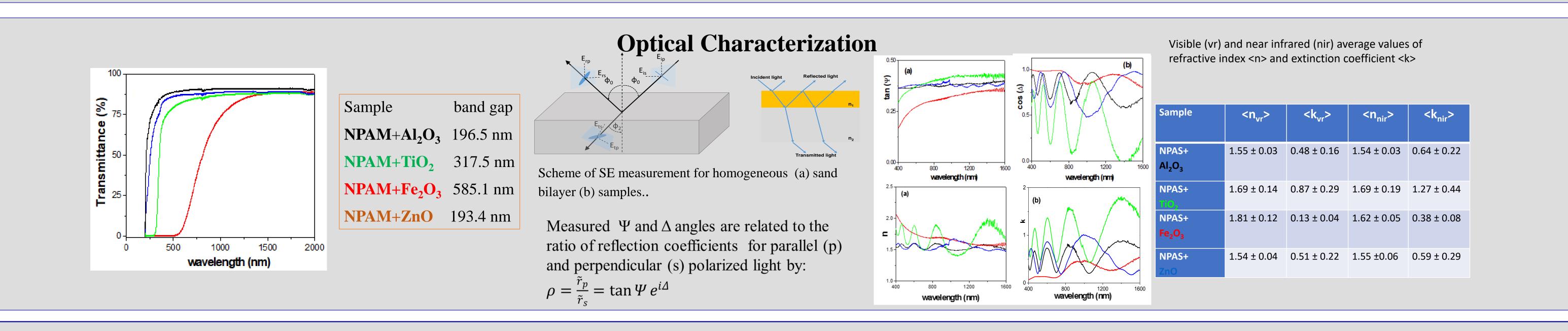
(NPA-bSs) which maintain similar geometrical parameters; moreover, the effect of pore size/porosity for samples with the same surface material on light transmittance and refraction index is also considered.


- ✓ Highly ordered nanoporous alumina structure (NPAS) obtained by two-step anodization. Pore radius $r_p = 12 \text{ m}$; porosity $\Theta = 12 \%$; Thickness 63 µm.
- \checkmark Surface modification by ALD (Savannah 100, CNT) of a functional oxides (Al₂O₃, Fe₂O₃, ZnO, TiO₂)
- ✓ Morphological characterization: SEM micrographs of samples surfaces and image analysis ($\Theta = (2\pi/3^{1/2})(r_p/D_{int})^2$)
- \checkmark XPS analysis (ESCA 5701) with a non-monochromatic MgK_a radiation (300 W, 15 kV, 1253.6 eV) (Table 3, surface atomic concentration percentages (A.C. %). Depth-profile **XPS analysis** (Ar sputtering, 4 kV and 1.5 mA, 8 min). This sample-destructive process allows estimation of layers characteristics evolution (Fig. 3)
- ✓ **Transmittance spectra** (Varian Cary 5000 spectrophotometer, Agilent Technologies) with an integrating sphere (wavelength interval of 200-2000 nm).
- Spectroscopic Ellipsometry (SE) measurements were carried out with a spectroscopic ellipsometer (Sopra-Semilab GES-5E) and wavelength ranging from 400 nm to 1600 nm at an incident angle of 70°. WinElli software (Sopra-Semilab) was used for data analysis and fittings.


Nanoporous alumina structures synthesis and ALD coating

ALD precursors & conditions


Oxide layer	ALD precursors	Precursor temperature (°C)	Substrate temperature (°C)
Al ₂ O ₃	H ₂ O	60	200
	Trimethylaluminum (C ₆ H ₁₈ Al ₂)	20	
Fe ₂ O ₃	0 ₃	20	230
	Ferrocene (C ₁₀ H ₁₀ Fe)	100	
ZnO	H ₂ O	60	200
	Diethylzinc (C ₄ H ₁₀ Zn)	20	
TiO ₂	H ₂ O	60	200
	Titanium tetraisopropoxide (C ₁₂ H ₂₈ O ₄ Ti)	75	


Morphological and Chemical Characterizations

Average pore radius $\langle r_p \rangle$ and porosity Θ .	NPA-bSs surface atomic concentration % of NPA-Ss elements (other elements with A.C. $\% \le 0.5$ are not indicated)
Sample $<\mathbf{r}_{p}>(nm) \Theta (\%)$	Sample C (%) Al (%) O (%) Ti (%) Fe (%) Zn (%) N (%)
$\mathbf{NPAM} + \mathbf{Al_2O_3} 10 \pm 2 \qquad 9$	NPAM+Al ₂ O ₃ 43.6 15.7 37.7 2.0
	NPAM+TiO ₂ 19.2 0.6 55.5 23.5 0.7
$\mathbf{NPAM+TiO_2} 10 \pm 2 \qquad 9$	NPAM+Fe₂O₃ 25.9 2.1 54.6 16.3 0.5
$\mathbf{NPAM} + \mathbf{Fe_2O_3} 9 \pm 3 8$	NPAM+ZnO 43.3 8.7 37.6 10.2 0.4
NPAM+ZnO 9 ± 3 8	
Reduction ~ 20 % respect to NPAS	Almost total coverage by TiO_2 or Fe_2O_3 layers but partial for ZnO

Profile curves as a function of Ar sputtering time for iron, aluminum, oxygen and carbon for NPAS+Fe₂O₃ sample.

Conclusions:

Geometrical parameters and surface material features of a nanoporous alumina structure (NPAS) with 12 ± 2 nm pore radii and 12-15 % average porosity have been successfully modified by covering their surfaces with layers of different metal oxides (TiO₂, Fe₂O₃, ZnO and Al₂O₃) by atomic layer deposition (ALD) technique, in order to get new nanoporous alumina-based structures (NPA-bSs) with modified transport and optical characteristics but similar morphology. These latter point has been confirmed by analyzing SEM images and XPS depth-profile spectra has permitted us to determine similar reduction in pore size and porosity with respect to the original support, and a cover-layer thickness of ~ 5-7 nm for the NPA-bS samples. Coverage material affects the values of optical characteristic parameters of the NPA-bSs (band-gap, refractive index and extinction coefficient), mainly when wavelength for the visible and near-infrared regions are compared, being more significant in the case of Fe₂O₃ coverage. For similar surface material, higher porosity/pore-size reduce refraction index and slightly affecting light transmission.

Consequently, ALD technique seems to be an adequate method for geometrical and functional changes of alumina-based nanoporous structures, opening their most common field of application (nanotemplates, drug delivery or nanomebranes) to more specific performance or platforms for biosensors or optical sensing devices.

CONTACT PERSON

Dr. Víctor Vega Martínez vegavictor@uniovi.es Laboratorio de Membranas Nanoporosas. Universidad de Oviedo, E-33006 Oviedo, Spain

REFERENCES

A.L. Cuevas; M^a. Valle Martínez de Yuso; L. Gelde; A.S. González; V. Vega; V.M. Prida; J. Benavente, Chemical, optical and transport characterization of ALD modified nanoporous alumina based structures. J. Ind. Eng. Chem. 91 (2020) 139-148.

A.L. Cuevas; M^a. Valle Martínez de Yuso; V. Vega; A.S. González, V.M. Prida; J. Benavente, Influence of ALD Coating Layers on the Optical Properties of Nanoporous Alumina-Based Structures. Coatings **9** (2019) 43.

.. Gelde; A.L. Cuevas; M^a. Valle Martínez de Yuso; J. Benavente; V. Vega; A.S. González; V.M. Prida; B. Hernando, Influence of TiO2-Coating Layer on Nanoporous Alumina Membranes by ALD Technique. Coatings 8 (2018) 60.

