Hydrogenation of CO₂ on iron-based catalysts

Martina Kubíková

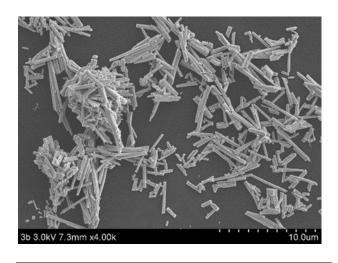
Libor Kvítek, Aleš Panáček, Robert Prucek

Univerzita Palackého, Přírodovědecká fakulta, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic

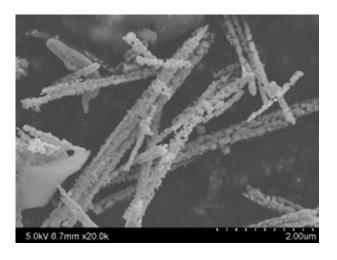
martina.kubikova01@upol.cz

Nowadays, global warming represents significant ecological problem. The crucial aspect is the increasing concentration of greenhouse gases (especially CO₂) in the atmosphere. [1] Possible solution could be assigned to the lowering concentration of CO₂ by conversion into more valuable compounds. [2] For this purposes, iron-based materials demonstrate one of the most effective catalytic material for CO₂ hydrogenation to methane, methanol and another simple hydrocarbons. [3]

This focuses catalytic study on hydrogenation of CO₂ in the gas phase. The reactions proceed at low pressure of 1 bar and the temperature of 325 °C on the catalysts. These catalysts are prepared samples of mesoporous iron oxides with a high surface area. All prepared catalysts are produced CH₄ by conversion unlike the commercial Fe₂O₃ used as reference. Byproducts of reactions are CO and H₂O. The catalytic activity is different for each sample and relates to a presence of Fe₃C phase in prepared catalysts.


The authors gratefully acknowledge the support provided by the Internal Grant of Palacký university in Olomouc - IGA_PrF_2019_033.

References


- [1] M. Áresta, A. Dibenedetto, Dalton Trans, 28 (2007) 2975.
- [2] A. Rafiee, R. Khalilpour, D. Milani, M. Panahi, J. Environ. Chem. Eng., 6 (2018) 5771.

[3] C.-S.T. Chih-Hung Huang, T. Chung-Sung, Aerosol Air Qual. Res., 14 (2014) 480.

Figures

Figure 1: SEM image of catalyst (No. 3) before CO_2 hydrogenation process.

Figure 2: SEM image of catalyst (No. 3) after CO₂ hydrogenation process.