Synthesis of Carbon Nanotubes at Atmospheric Pressure for Supercapacitor Applications

Islam Alshaikh^{1,2}

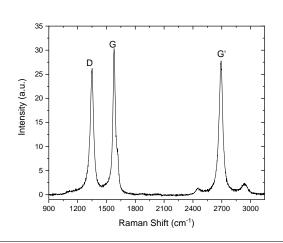
Ruairi McGlynn³, Paul Brunet³, Roger Amade Rovira^{1,2}, Enric Bertran-Serra^{1,2}, Davide Mariotti³.

¹ Dep. Applied Physics, Universitat de Barcelona, C/ Martí i Franqués 1, 08028 Barcelona, Spain. ² ENPHOCAMAT-FEMAN Group, Institute of

Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona

³ Mariotti Research Group, NIBEC, Ulster University, Jordanstown, BT37 OQB, Nothern Ireland, United Kingdom.

iralshaikh@ub.edu


Abstract

Scalable and qualitative synthesis of carbon nanotubes (CNTs) is a challenge for industrial use. The floating catalyst chemical vapor deposition (FC-CVD) process allows the continuous growth of CNTs in a free-oxygen atmospheric pressure ambient from a floating-catalyst at high temperature above 1200°C. In this work, ferrocene (C10H10Fe) was used as a catalyst source and methane (CH₄) as a carbon source while thiophene (C₄H₄S) was used as a sulphur source to affect the carbon diffusivity at the surface of catalyst nanoparticles in order to stimulate the CNTs growth. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy were used to characterize the CNTs. Raman spectrum shows the D, G, and G' bands, which indicate the high graphitization of CNTs with a ratio I_G/I_D = 1.174. NiO_x nanoparticles plasma-liquid where synthesized using interaction process using helium (He) plasma and ethanol as an electrolyte. The CNTs were dispersed in the electrolyte with suspended nanoparticles and then it was sprayed over a graphite substrate to be used as electrochemical electrode. The specific capacitance obtained from the cyclic voltammetry (CV) for graphite, graphite-CNTs, graphite-NiOx and graphite NiO_x -CNTs showed an increase in the specific capacitance from 0.5 to 2.0 F/g using 0.1M of sodium sulphate (Na_2SO_4) as electrolyte.

References

- [1] <u>Ya-Li Li, Science 304(2004) 276-278</u>.
- [2] <u>Lee Weller et al., Carbon 146 (2019) 789-</u> 812.
- [3] J.C. Stallard et al., Extreme Mechanics Letters 21 (2018) 65-75.
- [4] <u>Supria Chakrabarti et al., Nanoscale Adv.</u> <u>1 (2019) 4915-4925.</u>
- [5] <u>Christian Hoecker et al., Carbon 96 (2016)</u> <u>116-124.</u>

Figures

Figure 1: Raman Spectrum for CNTs ribbons obtained by FC-CVD.

Figure 2: CNTs bundle obtained by FC-CVD.

Imaginenano2020