
H2&C2H2 - low T 

H2&C2H2 &S  
 
 

high Tª    

Roberto Muñoz 
rmunoz@icmm.csic.es 

REFERENCES 

DIRECT GROWTH OF GRAPHENE ON  MOS2: TOWARDS VAN DER WAALS HETEROSTRUCTURES 

Roberto Muñoz , Elena López-Elvira, Carmen Munuera and Mar García-Hernández 
Material Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), C/ Sor Juana Inés de la Cruz nº 3, E-28049 Madrid. SPAIN 

INTRODUCTION 

Heteroepitaxial growth of ultrathin films of semiconducting materials, conforming heterostructures, 
represent the main foundations of numerous modern devices. Recently, 2D semiconducting materials 
combined into van der Waals multilayers have emerged as an appealing option to conform 
semiconducting heterostructures with outstanding properties, without the typical interfacial lattice-
matching constraints encountered in conventional heteroepitaxial (III-V) growth. Up to now, the 
production of these Van der Waals structures relies on transfer processes for research purposes with 
limited production yield. Therefore, to take advantage of this superlative properties, a scalable method to 
directly growth 2D materials heterostructures is a priority in this field.  
Recently, we devised new protocols to directly growth graphene on semiconducting oxides at low 
temperature by using plasma-CVD [1,2]. CVD is a well-known technology to deposit 2D materials and thin 
films and with the plasma assistance the process is performed at low temperature (<500ºC) preserving 
the substrate surface. 
In this contribution, we are extending our approach to directly synthesize graphene on transition metal 
dichalcogenides (MoS2) by plasma-CVD exploring the feasibility of direct synthesis of van der Waals 
heterostructures [3]. The motivation to select MoS2-graphene junctions is based on the ultrahigh 
responsivity of this hybrid contact under illumination resulting in a productive conversion of light into 
electrical current. The methodologies shown are intrinsically pure, scalable and represent a step forward 
in the direct growth of van der Waals heterostructures. 

PLASMA TECHNIQUE & EXPERIMENTAL SET-UP   

The graphene films are characterized in terms of morphology (AFM), chemical structure and composition (Raman). We identify the substrate activation as the main limiting factor to improve the 
material quality and propose a new strategy to overcome this drawback.  
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Electron Cyclotron Resonance  
Plasma Assisted Chemical Vapor Deposition (ECR-CVD) 

Instrumentation: Discharge chamber; plasma activation. Reaction chamber;  synthesis-
growth. Gas delivery system; flow controllers to insert gases to the plasma chamber. Power 
source; plasma activation via an optic fiber coupling the electric power to the plasma 
chamber for  gas dissociation. Allow deposition at low Tª. Bias electrodes: screening e- and 
ion+. Only neutrals reach the sample substrate. Thermal setup: heater & substrate holder. 
Pumping system: two stage, rotatory and turbomolecular. 

GROWTH PARAMETERS  

EXPERIMENTAL RESULTS  

• Carbon Precursor: C2H2 -CH4 

• Gas Carrier (Diluent): H2  (helps in graphitization) 

• Tª:  550ºC-675ºC  
• Pressure: ≈ 10-2 mbar 
• Gas pressure ratio: (H2/C2H2)||(H2/CH4)  
•Evaporation of S powder We developed many protocols 

before optimization  
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CONCLUSIONS & OUTLOOK 
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VERTICAL GROWTH!!
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High nucleation density 
D/G <1 
2D negligible 
 Grain size <25 nm 
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HORIZONTAL GROWTH FLAT FILMS!! 
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• Growth with hydrogen and acetylene at low temperature results in  small grain size and low quality. At high temperature vertical growth. 
• Growth with hydrogen and methane at high temperature results in high quality but small grain size. We relate this effect with Hydrogen gas activation and Sulphur release. 
• With added Sulphur, we improved the graphene material.  Grain size is over 50 nm and with high crystallinity . We guess that the effect is related to sulphur passivation. 
• On-going work: we continue playing with parameters to improve the grain size and the film quality. We will analyse the interface with surface techniques in order to asses 

the chemical state. 
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