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Motivation

A spin-valve device usually consists of two ferromagnetic (FM) thin films separated by a nonmagnetic spacer. The
electron-transport properties of such a device depend on the relative orientation of magnetization in the individual
FM layers.

The interaction between the spins is modeled according to the classical Heisenberg
Hamiltonian ,
H = ZJz'jSi S + ZAi(Si - Z;)",
l,J I

where J; = J (R; ) is the exchange interaction between spins S;and S;, A; is the
single-ion anisotropy at spin S;,, and z;is the unit vector pointing in the direction of the
easy-magnetization axis. To estimate the Curie temperature T¢c for monolayer CrN

and its heterostructures, the random-phase approximation [24] is considered within
the Heisenberg Hamiltonian. 1
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where (2 = 871'2/\/5612 is the Brillouin zone area and N(q) = + J(0) — J(q) is the
spin-wave energy, with J (q) being the Fourier transform of J (R; ), and A = AS?is

the magnetocrystalline anisotropy. By expanding the spin-wave energy up to the
second order in g, we arrive at the following formula for the Curie temperature:

* For current passing perpendicular to the FM layers, the majority-spin states are conductive, while the minority-spin
electrons are reflected or spin-flip scattered due to the lack of empty electronic states. As a result, if the magnetic
alignment of magnetic layers is parallel, the total conductivity through the device is mostly determined by the spin-
up channel.

- Spin valves have found application in information storage, logical devices, and magnetic sensors [1-9].

- With the emergence of two-dimensional (2D) materials, they are being proposed as building blocks for spin-valve
devices. Recently, some vertical spin valves based on thin FM layers and 2D spacers were fabricated [1,10,12].

- Another milestone in the field was set by the discovery of 2D ferromagnets [12]. Crl; was the first magnetic 2D
material, with a Curie temperature of 45 K [13].
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- The first-principles electronic structure calculations performed in this study are based on Density Functional 3 S In [A+47T ng] 52}

Theory (DFT). The projected augmented-wave method [14,15] is used as implemented in the Vienna ab initio
simulation package (VASP) [16,17].

- To capture the effects of strong electronic correlations, we use the DFT with Hubbard U parameter (DFT + U)
method [18,19], applying the effective on-site Coulomb repulsion to the d orbitals of Cr atoms. Electronic transport
properties are calculated within the semiclassical Boltzmann transport theory with use of the BOLTZWANN code

[20] in conjunction with the WANNIER90 code [21] used to interpolate the band structure by means of the

maximally localized Wannier functions [22,23].

Goals of This Study

- We study the electronic, magnetic, and transport properties of a CrN based spin
valve.

- We consider two hexagonal CrN monolayers separated by a blue-phosphorus
insulating spacer, which is perfectly commensurate with the CrN structure.
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magnetic anisotropy energy (A) calculated per Cr atom as the difference

between the out-of-plane and in-plane FM configurations in single-layer CrN
for a series of Hubbard U parameters. The insets show the alignment of spins
for the different magnetic configurations.
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Conclusions

- We calculate the exchange interactions and single-ion anisotropy parameters to estimate the

System VR ERR GO IRAN GO IS Net magnetization per Cr atom (M), Heisenberg exchange

CrN (U =0eV 3.00 4.90 0.47 496 ' ' -Gj ' '
R _ ) SN (), O Slt.e anlso.trop)./ AL (Al eliel il CLIE Curie temperature within the random-phase approximation, which is found to be around 910
CrN (U =3¢V)  3.00 11.41 0.73 U I temperature (T;) estimated in this work for monolayer CrN, K for CrN/P/CrN
CrN/P 2.93 13.33 0.11 SCEE bilayer CrN/P, and trilayer CrN/P/CrN. The values for | | o | |
CrN/P/CrN 2.63* 12.29 0.12 910 - The calculated magnetoresistance is around 12% in the low-doping regime.

monolayer CrN are given for two different Hubbard U

*The value is given for FM configuration. In the AFM case, parameters_ In other cases, U=3¢eVis assumed.
M = 0.16 ug.

- Relatively high operating temperatures, and reasonable magnetoresistance makes the CrN/
P/CrN system an appealing candidate for a lateral spin-valve device. [25]
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